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SUMMARY

-

This report deals with the -caleulation."of the bending
moments in and the distortions of fuselage rings upon which
known concentrated and distributed loads are acting. In the
procedure suggested, the ring is divided into -a. number of °
beams each, having a constant radius of curvature, The forces
and moments caused in the end sections of the beams by indi-
vidual unit displacements of the end sections..areIisted in
a table designated as.the operatiomg table in: confnrmity with

- [ v T ,E-'ﬂ f""-

Southwell's nomenclature. » . - O L

The ope:ations tabdble anﬁ}%hpbeﬁéernal:loa&s'aré*equiva—
lent to a set of linear equations, For.their solution"the
following three procedures are presented:

<« —
I

l. Southwell's method of:sygt®matic relaxations, This
is a step-by-~step approximation procedure guided by the phys-
ical interpretation of the changes in the values of the un-'”_
knowns. .-:.L* Lol Al an;-+- N - - .-

2. The gxowing unit procadure ‘in which the 1ndividua1
beams are-combinad gucceqsgvely ~into beams of increasing
length ‘until’ ﬁinally the entire ning ‘becomes .a single beam.

In 'gech stap of the prqcﬁdure &.8et :0f not more than three

il B T T

simultaneous liqear .equationg is solved.

- YT E—

"3, Solution of the enﬁifé.set of simultaneous equations
by the methods of the matrix calculus .

‘v e S b ’ . . LT R —
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In order to demoﬁotraté thouﬁénoer‘in which the calcula-
tions may be carried out the following numerical examples .

- A . L e s I . _

are worked out.‘ T LT L

1, Curved beam with Hoth its end sections rigldly fixed.
The load is'a concentrated force,

2. Egg~shape ring with eymmetbic concentrated loads

3, Cirfeular ring with entisymmetric concentrated loads
and shear flow (torsion of the fuselage) N —

" .
.

4, Same with V braces incorporated in the ring

5, Bgg-shape ring with antisymmetric concentrated loads
and shear flow (torsion of the fuselage)

6. Same with: V braces incornorated in the zring = R
The results of these calculations are checked whenever

possible, by calculations.carried out according to known

methods of analysis. The agreement is- found to be good - —

The amount of work neceseary for the solution off ring
problems by the methods deseribed  in. the-present report i
practically independent of the degree of redundancy e¢f the »
structure. For this reason the methods are recommended for
use particularly in-problems.of rings having one or more. in- .
ternal bracing elementa.g"‘ T L P - e : T

P I

ctdes ot . «FNTRODUCTION -~ . .-.. @ B . “
The methods and the formulas used in the analysis of

monocoque aircraft structures have been developed almost in-

variably for cylinders of circuldr, .or pdsgibly '‘¢lliptic,

cross gsection and of uniform m@chahi@al-pfopeﬁtids:"TYet, in .

actual aircraft such .structural: elements are. lseldon, i1f-ever, v

found. <Unfortunately, the .direct- metlods of analiysis are

little suited to cope with problems involving 'complex cross-

sectional shapes, irregular distridution of reinforcing ele- -

ment.s, concentrated doads, and’ .cut-~outs, »It Ts believed

that the indirect methods recently advanved by Hardy Cross,

and particularly by R. V. Southwell, (references 1 and 2)

promise a solution of such problems,. '
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The fundamental- justificatlion:for -thilg: -indirect approach
lies in the comparativeitese. with which stresseg in a com—
rlax structure can he2- zalculaked ifihey arg ceused-by some-
stipulated simplE displacement, -while the determination. of
the stresses and displacements ceused by known. externail loads
is often very diffieult,;’' orreven impossible:: The- calculation-*~
of the stresses in @ small unit of the structure correspondinf..
to given digplacements is known s the "unit prodlem® dinv.. 7
Southwell's relaxation method.  :In this method the individual’
displacements involved-infthe“unit‘préblemé"are;ebmbine&ﬁﬁy a
trial-and-error procedure until a displacement pattern of the
entire structuré -is "found that corfespoirds toan equilibrium
of the internal stresses and the external loads over the en—
tire structure. . ’ . S ¢ - -

a

.

In parts I én& II (references 3 and 4). of the present in—
vestigation a conveéenient unit problem was devigéd and solved 1~

for the purpdse- of eGalculating the stresses in sheetzand. o -oa”

stringer combinatiotid, TFurthermore, ‘s systematic procedure. of:

combining the individual vperationsd was developed which re—="’vii:’

sults in a rapid approdch to the actual state of distortions
caused by the known- loads gcting upon the sbructure. The’
stresses calculated by this »rocedure were found td.be 4n’
reasonable agresment-with these:meaSurediin experiments; . LA

In the present report the indirect method ie applied to
the calculation of the bendirig momeats in rings (frames) upon
which known external loads aré’asting: It is planned to .dig—~ .
cusg in the future'the strese problem+of monocbqué fusélages,
which are combinations of rings and:stiffened . curve& panels.

s T ° e w g ‘.L L

In the course of the present investigations it was . found:~-
that the calculations necessary for the solution of the unit
problems are rather~lahoriouwg.- For this reason.the solution
was worked out numerieally-and-the restilts are présented in
graphs and tebles in. part I¥® (referenced 5); -Moreéovér, it = &=
turned out that in many ring problems it is difficult to pre—
dict -thre most-likely displacenment patterns.and thé order of. 7
magnitude of the -displacements, This facét was not amfici~7-.v7 =
pated at the-beginmning.of the'present. investigations since fn~’=
the earlier work it was found that the displacements of rein-
forced panels could be predicted with a reasonable degree of
accuracy. It appeare that with rings the difficulty lisee in
visuallzling the amounts of rotation of the end sections of
the individuel arcs, and to some extent the tangentisl dis—
Placements, ‘while :it ig possible to anticipate comparatively®
well the radial displweement pattern, "On theé dther hand, the

T LK
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interaction between-rotations, tangential ‘dleplacements, .and
radial displacements is very strong, 'and 'the 'final bending .
moments, sheer forcee, and normal forces in the sections are
often the smalI ‘differences ‘of largse:valuses. caused by the in- -
dividual dietorbions.' Unfortunately, ‘the -Southwell procedure-
becomes very' slowly coavergent; that 1s;.1%t yields the gerrect
final Fesults’ 6dly dfter a .-very great number of %ndividual -
operations, 1% the- steps i7d the relaxatlon.- or the individual
displaceménts -~ are undeértakér-at "random, -withowt -a pregon- . .
celved picturé of the final pattern of deformations. .

V3 N

In. ofdér to. overcome this difficulty, a . preeedure has .
been wotrked" out whigh -might bertermed the "procgdure of the -
growing unit. In it the structure is broken up inte¢.units,
the unit problems are solved and the operatlons table 1s set
up in the s&am& manner as was suggested by Southwell, On the
other hand, the 'seolution of the stress problem, by the trial-
and-error ~-procéddure df the method of. systematlc relaxations
is replaseéd bya procedure involving. the combination-of the
individual U#its intd uttits:-of inereasing pize, -The external
loads &rs baladhéed theh by solving sets of.two or three simul—-
taneous linear- equations involving the-influence coefficients
of the large'tnits,- The 'new procedure is .reasonably simple
and fast, aS‘mav be Been: from the .numsrical! examples contained
in the bedv of the paper, L -

.‘A ' -'.-."' l,,_ . ,x } « A n.

Finelly. the examples présented in this repbrt- were also
calculated by considerlng'the so~-called operatimns table of -~
the Southwell methdd as'a set of eimultaneous dlinear equatioas;
and solving it b¥ the use of the matrix calculuas. In the:.ap- :.
pendix a simple explenation is given of the matrix calcula—
tions necessarv for the selution.? e Lo L e i

- .
i Y
v -

For the understanding of the™ pre%ent report familiarlty
with the Southwell and: the Harly Ctosk methods, or with party
I and I1I bf)tﬁis investugatibn'is n'of required' :
Lae v C "' B . 2 “.‘J. ' - - (_r )
Thi's inveetigatibn,”cbnducted et the Polytechnic Imstitute.
of Brookl¥n:,?ims’ sponsored by and confincted with:the financial
asslstancy of the' Natibnal" Advisdry. Coamittee for: Aeronautics, ¢

e b, 4 '{' B sy, —\AI_.:».- ?-. e LU, | : ! -~ . .“ T
2ot e dEis Badlua o v L
R = A A BYMBOLS Har . 2 Com gy .
[T S - N e -__,;,‘,’ N .. . i . L.
N v ' . vl . . [ S . . . - ,
.-..: B _l':;‘ o ‘.';-J'“_' Al N l":.‘..": DN
A ero gs~-pectional area of bar; er B poinit on: a. ring,,or

-+ theriideiuded arsa of a.ringi-or- & netrix: ek

[liirriel
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effective shear ares (based on tension)

lever arm of shear flow

c, &, e, £, g matrix coefficients. P
D, E points on a ring
Young'!s modulus of elasticity
shear modulus

moment of inertia of crosgvsection; or  ident ity matrix
metrix coefficient A e e
developed length of ring segment

bending momenti or a matrix

end moment reacting on bar or on constraint

‘_shegr flow acting slong bar

“displacement 'of & point in radial direction

‘an unknown quantity

© 6nd radtal reaction acting on bar or on constraint

rédius cffcurvature of a riﬁg segment

-

end tangential reaction actlng on bar or on constra:nt"
Or applied torque s

.

strain energy

displaceément hf'éjisﬁnt;id taﬁgential direction.

shear force acting on a cross section ... . .,

rotation of a section of a bar; or an unknown quantity

e o I

-4 -.. . v-"

rectanguiar cbo%hinate; or an unknown duantity

et

angle subtended by ring segment . srnizonIc
> LERERS P A . -

. . - - a
L A T0 BER LN wtred
bl U4 ~E . T - .
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Y section—leng%h pafaﬁefér'(ALﬂkl) N M -
Iy determinant AR ’ o -
k =1+ (B®/v) [(l/f)j+£ij N T Y e ST LT
o= 1 - (BR/Y) [(1/8) # 1] S ST
v = (G/E) R O b g }
¢ = (A*/A); or angular coordinate - <
o "tThRguisr ebbbdinate ! :
S e £y t

w rotational coordinate

The symbols used to denofe ‘influence ébefficients are de—
fined in the followling manner:,

~ ora -

The term (’B) stands for the force or moment a caused
by & unit movement®in the direction’of b (whiéh direction
is thet of the force R or T, or_ of the moment ¥). Thus
(nn) is the moment due to a unit rotation,’whilc (tr) is the
tangentjal force arising from a unit radial _displacement. -
Further;’ b distinguish the reactionq at the fixed end from
those at the movablg en the subseripts, E” and M are om—
ployed. Gonsequently ((%) is the moment arising at the fixed
end.of..the gurved beryag,e. result of.a unit fangential dis— -
piacement of the movable end, while- (tt)M stands for the tan—
gentlial force at the movadble end due to a unit tangential dis—
placement of that end. e :

The momenty:radinl force, and _tangential force caused bdby.
& constant shear flow are denoted bv the svmbols ng, rq, and
tq, respectively, ~The values are:valid for- the end of: the
bar toward which the shear flows. At the opposite end the
reactions considered here,are-acting from-the support.upon the
curved bar.
At R . L IE BT oo ST NES ST N T

DEVELOPMENT, OF . THE RELAXATION METEOD,.WiITH.THE.AID.QF:AN EXANPLE

The Structur%ardngug peesdse oR £

dugauy wstr vy Fobastduz sling d
The structure used ag an example in the development of
the proecedure is shown in figure 1, It is a curved beam of
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square cross section which may be thought of as an assembly
of two cantilever quarter circular beams 4B =and AC Jolned
rigidly at point A . :As -each of::the two curwed beams .could N
support by itself the 100 pouwnd Load applied - at ‘A, the &13—?
tribution of the load to the two beams cannot be determined “
by the laws of staticg:.alone, The problem is three times re—
dundant, since the unknown stresses in thé cross section ab
A add up, in generasl, to ap unkpnpown normal force, an unknown
shear force, and an unknown momenit th the plane of the circles.
There cannot be any force and momB¥Y 'Fesultants perpendicular.
to the plane, since the external load acts in the plane of the
curved beam, , O T R

The problem of the load distribut'ion can be solved only
by taking into account the deformations of the structure.
This can be done comveniently 1f- the structure is consldered
cut at A and the deformations of each gquarter—circle are
calculated independently.. When; thesq calgulations are com—
pleted, the ‘continuity of the sctual strficture can be re—es~
tablished without difficulty through a proper choice of the
unknown moment and forces in Bection A, a8 wilill Dbe shown
later. Ao - . : P

2% ¢Unit Problem ..

The strudture is broken up Anto twoamits; namely, the
guarter circles AB and AC,. The unit problem .cop&ists in
finding the tangential (normal) force T, the. Tadial (shear)
force R, and the moment AN .(see fig. 2) unfer the action
of which the fréé&~ead 'Point A (6f the unit undergoes any pre—
gscribed displacement w in the x direction, v in the ¥
direction, and any prescribed rotation w, which latter is
considered pogitive if it is" ¢ounterclaockwige. like ,w. . The
unit problem, can be solved best by. calculating first wu, v,
and w caused by tnknown forees T and ‘R, :iand.an‘dnknown
moment N, and determining the unknowns afterwards so as to
obtaind-the ptescribed values.:ofsthe digplacements and.the ro—
tation.,  Ia cohfofmity with,standard practice.exp ansionai and
shearing deformatidns will be neglected, sinece: th;y are. much
smaller than the bending deformations. i

The bending moment M ca*sed by T, R, and N in =& sec—
tion of the eubved-beam defined by the-angla ¢ . {(see.fig, 2)
is given by . . T

T
(!

T LAY e Pri (Ll — éos($);tr3rasiﬁ ¢ + k ' (1)
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The relhtive rotation dw of” two nermal sectlons of theh

Ter 3
curved beam an. Anfimitesimal distance ds__apart R R N T L
LA ﬁw’: Mds/(EI} = Mrdcp/(EI) ' (&) o o
~ Tl b St
Since ‘point an ib“fimed the rotation -WA of point A can’
be calcuilatéd from thc intcgral = - . ot S
R Y -
T oWy o= f LTMr /(BI)] aepic .- : : .'

- -
P e . .

Substitution:ﬁf+ﬂﬁ “from éqﬁafiqn (1) and integration yields

; (r/EI){[(n/z)_'-’f 17 Tr + Rr + (n/Z)N} (3)

Whénnthe infinitesimal element of .the beam at ® under-—

goes a..rotation dw, point A is displaced on iInfinitesimal
distance du in the x' direction, where

du = r(1 — cos ¢ )adw (4)'

i

With B fixed, the toatl displacement
the x direction becomes. . . . .

nor Tt . .

\ ale S i)
‘up = du.= (rzyET) * M(1 — cos@)de
[T Lo

2]

uy of point A in

Ay

Substitution and integration gives R
= (r® /BI), {[(3 hJé) u; 2] Tr + (1/2) Rr + [(n/z) -_-l]N} (B)

When the infinitesimal element .of the beam at ¢ under—
goes an Infinitesimal rotation dw, point A 1is diaplaced an .
infinitesimal distange  dv in the ¥y direction.

f - L=
-

‘h&" = r sin ¢ dw : (6)
Consideretions similar to those stated before give

TT/a o n/z '
vA=f . (rE/EI) f M esing d ¢

0 .
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-

and .
=-(-1_‘fa'/E,I>{Ci/éé)'*,“ir.;-_t .(1.1/‘35 :Rr‘;?‘: N.I (7)

T : ""-.r-':' e

: The task 'df determining the dieplacements of 'the end
section A caused by the forces-,E and R~ amd "the moment
N bhas thus been completed " The problem must now be inverted,
and the values of T, ‘R, apd. - N.- must be celculated that
cause. prescribed’ distortions wp, Vs, and WA - This calcula-
tion can be carried out by. solving the threé:'simultaneous
equations (3); (5), and*'(7?) for the unknowns T, R, and N
when the values, of wuy, YAL. and . WA ere given. In computa-
tions that follbw lster in this reporé it will be found con-
venient to have the solutions of three unit problems charac-
terized by the following groups of prescribed distortlons.

- S

(a,)_‘ 'L'LA =__]_. Gy e vA. = 0‘; [N .':-w-.A'.'uz Of .

' l,, .a . :’-.. L . - - ., [ . - N \
() uy =0 vy, = 1 wy = 0 -
(c?“.uA =0 . ¥, R0 . . -- wy =1

DR IR A hast k. ' .

The numsrals 1.:dencte units %n any conveiient and consistent
system of distances and anglee. Lot

The solution of equations (3) (58)., and (7) corresponding
to valugs. (&) of the:distortions is - S

T = 42.87 (BI/r®) R = _39 37 (EI/rs) . ¥ = 9.484 (BI/r2)

When values (b) apply the solution is

T = 39,37 (El/rs) R = 42.87 (EI/rs) . N =.-13.08 (BI/7%)
When values (c) apply the solution is - R PSP
T = 9.484 (81/r%) R = -18.08 (8I/r®) | N = 5.44% (BLjr)

e

In computing the above values a calculating maching, hqdnto ba_
, uesed, since gmall. difference of large numbers had to be de-
termtned. ~ The values can be verified by substitution in .equaws
tions (3) (5) . and {?);, -respectively.

In subsequent calculations, use will be made of quanti—f-
ties denoted as "influence coefficients.? Influence eoaffiu -
c}ent‘hﬁt is defined as the tangential force @, caused ‘by a

= e R
ar
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unit displacement in the tangential (%) direction; influence
coefficlient t2 1ig the tapgential force raumed by a unit
displacement 4n‘‘the radial (r) direction; Tn denotes the
radlal force R caused by a unit rotation (in the =n direc-
tion); and so forth. With thie notatinpn-the solution of the
unif. problems may be atated concisely 8.8 . -

- H P ey o3
~39.57 (EI/r Y Tm = 9.484 (E{[g )

tt =-4z 87 (EI/r y

~13.03 (EI/r®) an =.5.449'(EI/r) (8)

—~

f}-=;42.87 (81/#%) 2

n

Influence coefficients ;E ZE ar . are. not listed. The rea-
son; for. the omis-ion lies in the éunalities
?% ;_t; ;zl k== ' ’% = fﬁ ar = o (9)

The” validitv of equations (9) follows directlv from thh expres-
sions §1ven earlier as the solutions of equations (3), (5),
and (7

The numerical valuses of the dAnfluence coefficients will
now be computed for the example” ‘at hand. The moment of iner—

tia of tke cross section of the curved beam is
RN :

1 D725 12 = 0 o082 A nier™ -
The modulus 0£’24SvT gluminum allov is given gs ;E‘Lelbla;x 106
Pty "Hénse Y
et ie UL

.1 BI £-84,600 'Betihd~fnchas"

v o PR (10—)
- Y oar. -
With beam AB Ct ' T
3k P
54,6 pounds
.- per insdh

R Ca)o Bt

EI/I.545%§Oriqoh—pounde. E.I/ra = 546 pb&hds EI/r
W LT .

1

Consequently, |

TS

\-‘ oo -

)

Tt = 2340 pounds per inch tr = ~2146 pounhiper 1nch
— — B S SR
tn = 5170 pounds.. . .::snfun- BFpd ¥ 2340 poupdp per inch (ll)
— ey L Al Lo FEngRTEn
rn ‘= =7110 pquqaq,iq, vy Gediiiuev HR S 29 700 inch~pounds
cre siory SR BT g R4

With beam AC 1t is convenient to assume the positive
senses of the tangentiql Afarce, radial’ force, aqi the moment
as -shown in figure B, r Ehe«positlfé-sensea of the ,displacements
and the rotation correspmnd to thosei®f the 'forces and the
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moment: - Sinee the radiuns of thls .beam is 20 inches, the in-
fluenée coefficients have the. valuee,‘w“: o e T

P> S T o S S O

.'\.’.' - . w4

tt = 292.5 pounds per inch tr = —268 B pound ber” inch” -
— Tl ioangt . B e~ T s e s P
tn = 1292 pounds per radian 7 = 292.5 pbun&b perﬂinth: (12)
’-.\ ! LTI S0 e,
rn.__l777 pounds per radian v an = 14 850 inch-pounds perJ

: ”'radian e S

ot . : LA ;

B L Il B . :The Operatlons Table . . R

; o~ e -
- -~ wr -

It 1s possible-now to consider the effect of dieplacing
point A wupon the‘ppmplete structure, Since in the complete
structure there is no cut through the curved ‘beam at point .l,'
end point A of beam AC 1is always displaced in the same =
direction -apmd through the .same disbhance as .is end point A of
beam AB. A gimple "unit operation i's ‘defined as & unit dis-
placement in the direction -of one of the three displacement
coordinates (tangential, radial .rotational) qhile ‘the other
two displacements are held unchanged., The forceés arid the mo-
ment caused at point A during any unit operation can be
easlly calewlated with the .aigd . oﬁpthe influence coefficients
given in the preceding article. _

In order to displace point A 1 inch in the tangential
direction and 'in the positive sense indicated 1n figure 2,
the following forces and moment have to be appiied to point
A of bar AB: . . . - _ -

R i e L el £ ce k

't = 2340 pounds ; R = -2146 poudds N = 5170 inbn—ﬁénﬁde:

In a similar manner the forces and moments can be calcu-"
lated that -are. ‘necessary .to displace end point .of beam AC
1 inch in the tangential direction, It is advantageous to '
adopt the.esame ,sign conyvgntion for the forces and moments &t .
A independently of whether they are derived from’ beam ‘AB - oy
AC, TIf the sign convention 6f figurfe 2 is used, the pésitive'
unit tangential - displacement of point A of beam AB csrre-~
sponds to a negatlve unit tangential displacement of point &
of beam AC in the system of coordinates shown in figure 3.
Moreover o

- " LT = - ,__-3 e - '\\'-j-- Lo I B

Tac = -Tas BAG = HAS CUUNge = -NaB

R _: - - - R & 1 _l‘ . » . ‘, -
where .the.subseript: -AC. refers to beam AC and the .coordi-"
nate eyebem of figqre 3; and subscript. AB to bqam "AB  and

> - Feaa oo P . . : -
s L LV I L UM I SR Y. T -

- %3
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the coordinate system of figure 2. Hence thé folléwing forces
and moments are.necessary in order to cause polnt: A of beam
AC to displsce 1 inch to the righti

-

T = 292.5 pounds R = 268.5 pounds N = 1292 inch-pounds

Alt ogether, the following forces need be applied to point
A to displace it {and consequently the ends of both bars AB
and AC)} 1 inch to the right:

T = 3632.5 pounds R = -1877.5 pounds N = 6462 inch-pounds

The effect of a unit displacement in the positive radial
direction can be obtained in a similar manner. Beanm AB re-
quires O

.o

T = -2146 pounds R = 2340 pounds N = ~7110 {néh-pounds

With the eystem of coordinates of figure 3 the forces and the
moment g necessary to move noinbl‘l‘:of beam AC 1 1nch upward

are o JERTA A . B . .
A e LT t-___f__..-- EE . T .

T 268 5 pounde 3 Q-BQZFS:QqﬁniiM'N = 1777 inch—poﬁnds
Altogether,weﬁe'f“ui Cnin ki ‘

PR

*

Q?ﬁ _ﬁ Ng='w5333 {nch pounds

- ‘5}‘..

T = ~1877.5 pou?ds R = 638
Finally, in order toarotate end A" of bar. AB 1n"the
positive XN direction through an angle equal to a radlan, the
following forces and moment must be anplicd toipointt A of
bar AB: ' . _ _ - o .
T ='517O pounds R = -7110 poﬁnds N = 29 700 inch—pqunds
Y ’ IR |
With the sign conventton of figure 2 bar AG; requires for the
same rotation’ :, LS s . g

-
wr
A

-

LT 1292 pounds ‘R = 1777 pounds , N _-14 850 1nch—poundg

v 3 . TR _ ,
- . - . .. ~e [

Altogether ' ' ..-,;rn : B R _ T u,_.f. -

-~ f %
-

RN T T ST
foa

T ?’D462 poundsz‘ R = -5333 pounds XN = 441550 inch—pounds

It might be mentioned fthat” all the values just calecul ted
are flctitious in the sense that they would.be 4fhe: ‘sctual” vgi—
ues of the forces and moments -only’ if the 1imit of proportion-
ality ofgthe material were higher tHan ‘the 'stresses caused by

§ A

T
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thelfilorces~and 'moment sy and 1 -the-ilarge 'distortions "a1d not
affeststhe e§uilibriuh ™ If, 'HoweVer," Both the forces and the
displasendite are”divided’ by, ‘$ay, 100, no ‘ob3j8etions can be
raiae& agdingt” the "¥41lidity 8f "the data just déleuiated. =

¥ mipzoam oot. ot omra it ML - ¥ { N _ -
%he‘resﬁlté of 'the™ caIculations are summafize&-in'thg;::
tatilesthat followsr . 1 ©. =7 72 . 775 TNt
atwalon Xordf o A T ;n;é;;: o vl dEav
‘?ﬂiu"\9ﬁ= ,=23'. _‘-~s: o“c TE e d i -k éfﬁfaﬁ ST
S uhe vre ol Table'l, Gperdtions.wable gErLANERL T
. ke TR I SR ,-Jé.l Ty =i 0% Panidaes o o
A Tl ;v -_..-'.r-—.: - '__:-},..':. o q-n:_!-» - R P *._":—!K
Not., v Operationa moey ‘(1b)ﬁ“13"- (ERZ; b’ii‘(i’f_ib)
[3]:- u =1 imch": -- w0i2EBE 57 1 41877 v 0 Jeeen
[2] . v = dnech ~: . v +18%7.6 '* - ~2682.5 --:-* __-;fj;+;5§-§-_*s;r-l_-.
(3] w ='fl"i'ad1-ari""-"f- <6482 77" T 453ET RS ST vt
T e I T R R crmognn (AARE ST
s AEAT ieee v oA i (oitrer m onisnis

The table is known as the "operations thoH1E, W T In 4% the
forces and moments previously calculated appear multiplied by
(-1).. . Inzother words, the  forces and: mohménts 116%84°2F8 not
thosefto“&erapplied to the'strueture at-pdint A “4nf 6rabr to

cause_§h91p;pjcribed»distmrtions, put-Lfhel? reac%ioﬁ% ,“fr,
IR H P > '-"r'— Toom Bk M Q" t #}.)__ o - ALY e T T
RESE B2l T e bl T S . - - e T
txw oo hzorgfaoanzx oo 0 b “ : I":'"'wiﬂ .:iﬁ-::ﬁf ST
‘_'.' R TN A 7 7, S T Relaxation Tablé - B0 . e
. < sy [T N 2. . fer - ow i T ‘ud*- " . - =
TR ,E’.. daril - .

. Phe vpergtionss table will be:déed net#:¥n* orier to estab—
1igh :ithe.disbarted. shape 1the 'dtrudtureds’ figufe‘icassumes
under ‘bhe - metiton lof sthe “1:00-ipoind T 6da gppliéa "4¥Tpoiat AL
It is convedientvtorimdatine that & figid: wall fs ?rané Be
hind the :ghkructdre parallel to theﬁﬁfané “of thé""rfe& Qééﬁ‘:
and that by a- cl&mpfng ‘device tH¢ Bedn s 'rfgiafy attaéhéf £.0,
the wall gmlpornx. A, . Moreaver, “the FeXteFnaT T6da maf e 0 S
thought of as being suspended from the clamping device.

.hrw
LY RS NN

:r oot

The structure in ite original, nondistorted form and the
external load are thus in equilibrium, as long as the clamp
and the wall are there, It is the purpose of the "relaxation
procedure! to transfer the load from the "econstraints" -~ that
is, from the wall and the clamping device - to the curved
beam in & number of successive operations during the course
of which the beam gradually assumes its final distorted shape.,

A record of the individual operations is kept in the so-called
"relaxation table" (tadble 2).
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‘In the first row - of the relaxation table the oxternal
loads arse listed " In the present example the only externsal
load is the 100-pound -lead :which acts 1n the negative radial
direction if, as before, the sign convention of figure 2 is »
adopted. Inspection of the operations table reveals that op-
eration 2 is best suited for balancing the vertical load.
Consequently, the clamping device is loosened in a manner to
permit s vertical translation of section A without allowing
1t to translate horizontally or to rotate. Since, according
to the operations .tadle, l~inch displacement upward would -
cause ‘a vertical ‘downward force of 2632.5 pounds to act fr
the structure upon the clamping device, & aownward (negativq)
displacement v =.300/(~2633.5) = -0,038 ipch: must'be under-~
taken., The second .xpw of the reldxation table 18 now filled
in-with the values of the second row of the operations table
multiplied by (-0.038). It may be seen that operation Juat
undertaken: namely, ,the vertical downward displacemenﬁ of .
01058*1nch _caused the. curved ‘beam to exert upon the bon-'
stradintia’ V@rtical upward forbe oY 100 poundsuL This fb}ce
balances’ the applied Jond L e Lk . ’ .

: 1 l: :_. l ol r.l - . P -

Unfortuhately. however, the displacenent also caused
the curved beam to exert upcn the conatraint a horizontal
force of 71 pounds to the lefb, ‘gnd s clockwise moment of .
202 inch-pounds. Thus, the Vertica} forces are balarcedy b?t'

a new unbalanced horilgontal: forke- a%d & new unbaelahced moment

are introduced. be eystem;ioftcoutee, 15 in equiiibrium,'f';} 4
gsince . the . clamping device and thE" ﬂigid ya}l that: 19"tha e
constraint -~ take care of the. hdriioqtai ‘force and of 'the ‘mo= ’,
ment. The purpose 0f the.relaxdtfon pchedure, howeverﬁ‘is

to approach gradually a -state of diatdrtions in whichl-arti¥i-
cial conegtraints are not. needed for equilibrium. It s ims
perative, therefore, to balance ‘out the new unbalanced force
and moment. However, before any further gteps are undertaken,

R CEE

the clamping device must again be bightened completely1 i 2

"

. : 1 . NS T

- ' ' ) . i3
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-0.00266 x [2] SR SO T A 1<

0.000696 x [3]
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1
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The unbalances are the algebraic sums of corresponding
values 1n rows 1 and 2. They are listed in row 3, under the
dashed line, The question arises now whether T or ¥ ; ,
should” be balanced first. Because it 1s expected that: thé
final distorted shape of the striucture will involve consider-
able hcrizontal and vertical translatlions of gection £,7 " but
only a slight rotation, 1t is advantageous to concentrate
first cn-the cancellation of the unbalanced forces rather
than of the moment. For thisg reason, operation 1 is now un-
dertaken. The c¢lamping device is again loosened, but now in
such & manner as to vpermit a horizontal displacement, but at
the same time to disallow any vertical translation and rota-
tion. The ensuing horizontal motion will come to a stop when
u= 71/(~-2632.5) = ~0.0287 inch, Multiplication of the values’
listed in the first row of the operations table by -0.027 aad«_
subtraction ylelds the remaining unbalanced, or "residual, ' .
quantities récorded in the fifth row of the relaxation table.

According to the fifth row there 'are no horizontal un-
balanced forces acting now upon the constraint, but an unbal-
anced vertical force of -51 pound eppears again, which is ac-
companiad by an unbalanced moment of ~27 inech-pound. Conse-
quentlyg the fwo displacements undertaken succeeded in reduc- .
ing the.unbalanced vertival force %o Bl percent of its initial
value, but enly at the expense of introducing an unbalanced

moment &t the same time., The relaxation must be continued, r
thereforeg, until all the residual quantitlies become small -
enqughﬂyb be neglected in engineering calculations. ] o

. The. clamping device is tightened and loosened again suc-
ceseively, but always in a manner to permit only one single
type of motion at a time., The effect of these motiocns upon
the forces and moment is calculated in the relaxation table.. - -
After nipne operations the residual forces are T = -5 pound, .
R =0, N = 31 inch-pounds. It is thought that now it 1s time '*
to permit section A to rotate. Thiis, operation 3 is under- . ,
taken and recorded. This is followsad by one more oneration[}l
and again operation [3], after which the residusls are small R
enough to0.be neglected. o - L . ;

Because of the great number of arithmetic operations in-
volved in the preceding calculations,. it is-well to check the
results. -A repetition 0f.all the computations would be very
time consunming. Fortunately, this is-unnecessary since a
much simpler check 'is available. The sum of all the vertical
dieplacements can be obtained by simple algebraic addition:

vtot = '-0.07528 inch
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Similerly,
Lo ey = —0.0SSigiinch
L I o - .
. . 3nn e I
£ -m~~~—--—~1wm"w"¥"O:OOII89"rdEIé§'"' ‘ -

e tot . , \
- r - . N . .~

The forces and the moment caused. béwaaeh one—of these total
distortions can be obtained by multiplying the corresponding
row in the operations table. -The vadliee computéd are entered
in the "check table." The algebréic sum .of .each .column of
the check table represents 'the final residual quantitiee.

Por the present example these calculations are carried
out in table 3, In the absence of errors the residual quanti-
ties of the last row of the check table should be identical
wlth the- residuals listed in the last row of the relaxation
table. This is obviously not the case with the present exam-

ple. i .
Y - ' - —
2 e e Table 3.~ Cheeck Table o
T . R o § 7 iy n.s
2 et nun SO vy ,l. L (meTb))
External force “'ﬂ“ o 0 =100 - : » 270
u = -0, 05514 1nch “we .. 145 w-¥0470 7 3bB86
v = -0.07588 “ineh. [, . *141.¢- SRR X=X - P Yoh |
w = 0.001189 radisn -8 6 "  F-  -BB
Reesiduals -4 0 ~ -98

e
Fortunately, there is no need for hunting for’ errore.”'
Instead of dolng so, a new set of relaxations can be carried
out starting out from the residusls of the check table as
the glven external loading, :Table-4, the second relaxation
table, presents thege calculatione It may be seen that after
only five operations the resliduals are reduced to 1 percent of
the initial external 1oqd .
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Table 4.- Second Relaxation Table

7o+t )
T R N
Tafivy oo (1) (in.-1b)
External force -4 o - ~-98
-0,002z % [3] ;lﬁl' -

184~ ... "o

X

M)
RARE B SR

af.,

3
1
4 = ko
N
i
1
)
'

L3 Y ;‘
ST I "

'-_\ P
-

run

-0.00456 x [2]

~0.00054 x [3] B T 2 L I
. . N 4 ' - 93 o ' 3 e I’ Q_’ Ty
+0.00152 X [1] B S S ST
O O - 1'0" -C T W
~0.,000225 x [3] o i -
o | 1 -1 0

These results arelﬁow checked’in the second. pbe k table
(table B). The residials of this are substantip ghe samé”
ae those of the second relaxation table. Tha: Jiﬂgh} ‘devia--
tions csn be explained by ‘the inaccuracy of. ﬁlddﬁ Tule valcu-v
lations, and by the omission of friactions of pounds’ and inpha
pounds in all the tables. AR

H

The fact that errors need not be traced bdbut can be elim-

inated in a few additional qperdtions.is considere&,gng of

the: major advantages of the relaxation preeedure.“ ,‘3}:”'133
ST e e e -] k T RY

I - f © T 0 aevilny eiF

Table 5.- Sbeond!Check. Table ‘""”ﬁTf_;u'“vf

B JoEVLT wlue

’ AN P i

T R N

(1v) (1v) {(in.-1b)
External force C -100 (o]
u = -0.05362 inch 141 -101 346
v = ~0,07984 4nch -150 210 ~-426
w = -0.001778 radian 11 ~9 79

Residuals 2 0 -1

i
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Direct'Solution. of the Operatibia Table

The operations table représents & sét of linear equations.
It 1s easy to verify that table 1 ‘cat bel reWritten in the form’

R A ‘.
v .ol JER T an

: L F AR 4 o

s ] SR . A

S 4t L268215 w ¥ 1877.5°7 ~¥6462-W'+ T &0 -
=

1877.5 u - 2632.5 v + 5333 w + R = 0 ©(13)

~-6463 v + B333 v ~ 44,550 w. '+ N. =0 ..

where u, v, w are the unknowh displacements’ and rétatiod,’
respectively, of section &; and T, R, N are the given_ex-

ternal forces and moment, respectively. WigH " the values of "

the external loads of the present example,equations (13) be-
come ! '

Do . [ ny o
4 STRETR N

gigv 1l_2532 5 u + 1877 5 v o 6462 v %Abinif - ?j

1 %oal

1877.5 4 - 2632.5 v + 5333 w = 100 (14)

-6462:u + 533B.¥ - 44,650 w = O, ., ‘ﬁ
. ; ¥ SRR

These equations can be solved directiy.:'Thé solution is

w = =0.0518 indk ' "% v ='l0.0785 inqh T ;o.ooigs radian

vorer oty .

H

- Bubstitution in equdtions (14) shows tHat the acéﬁracy is
better than 1 percent. The agreement of this rigoronsg- edlu-~
tion with the results obtained in the rslaxation procedure is
also good. T . \ .

It might be argued that there is no need for the relaxa-
tion procedute 1f the simultaneous equations represented in
the operations table can be solved directly without dlfficulty.
This argument is Jjustified as far as the present example is
concernsed. In many other, more complex problems, however,
when the number of simultanecus equations:ilnvolved 'is very
large, the relaxation procedure may rapresent the quieker and
easier solubion. , - . > o cpE . 5, N - TR
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Calculationof the, Bending Momentae - .:.:
The-%eﬁﬂiﬁg noment iz sectionA.can .be essily aalou-
lated ‘with 'the s¥d of the . influence coefficients of bar . AR .r
given in equations (11), or those of bar AC given in equa
tions (12). If the distortions listed in equations (15) are
used, the followlng bending moment Ng :is obtalned for sec~

tion & of beam AB;

S A

b
P

f . —~ s
Ny = u at + v ar + wan - - ° = s

-0, 0515 X, 5170 + O 0785 x 7110 - 0. 00193 X 29,700

" -

235 4 1nch~pounds'

-

If the displacement u and the rotation w are sttributed’
positive signs in_oprder to comply with the slgn convention of
figure 3 and equations (12) the following expression is ob-
talned for seobtion A of beam AB: .,

Ny = 0.0513 x 1292 +°0.0785 x 1777 '+ 0700183 'x 14,850

= 254 .4 .ingch-pounds_ ... . ..

i -~ - e
5 ? .

Therttworvalues differ .by:;less than,l percent. .The dif-
ference 18 considered permiesible gsince the calculations weFe
carrled out with a slide rule. The normal force T, and the

Bliear -force B4 “can bs.galéulated in a similar manner,, When

the ‘ealci¥ations are’ based ofic bar . AB L oo D3 e
G TrLseama o P e Do AR e T ST A
Ty, =u tt + v tr + w %n oo
- v % e . - t- <4 ":
= ~O 0513 X: 2340 + 0“9755 X 2146 - 0. 00393 x 5170,-A:, o v
s N AT L APRS A : LU Piat s Ve varn w3
= 33 4 pennds R B R 5ﬁt?1:gﬂt ~ ! R R
R S LIRS N R R SRR ST PO P B TR R < e
Ré.:’u rt‘} Verfode o rniiteue Loae CLeada e el cu s ¥
P R R S R A AL T G S SR §

+0,0513 x 2146 ~ 0.0785 x 2340 + 0.001¢3 x: Y110 -

-60.% pounds

i

il
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When the calculations are carried out for bar AGC,

T, 0.0513 % 292.5 + 0.0785 % 268.5 + 0.00193 x 1292 = 38.6

B, = -0.05157x*2hé}$j?quqéesfifz§§ﬁ5f410ﬂ00193'x 1777 = ~40.1

T s fron

The deviation of the tensile.forceé .obtained for AB from that.
obtained for AC : is much.less -than.l percent of the Joad.

The two shear forces add up to "4AL0L - pounds,instead of «the cor-
rect -100 pounds. . i : B T :

sap b -

Lhe beﬁding“ﬁomenﬁ in ‘beam . AB can be-caibﬁfaﬁea_f?Bﬁrﬂ
equation (1). In order te get consistént results, ‘the -follow-
ing values are ueed in the equations. :

: - LY

.'.i'

N = 234.9 1nch-pounds T-= 38.5 pounds"RAB = ~60 4 gounds

.‘ ‘, . o .i ; ‘ ' " ‘ . ) -'. Ac = -1;9 ; 6 p O:T'In:d ? e ; -
’ = . - R 3 S
Bauation (k) becomes S - P L

e

38.5 X 10(1 - cos m) 60.4 x 10 sin ® + 234 9

619.9 —_385 cos m«— 604 gin m

IJ‘ L

T

Similarly, the bending moment in Bea

Lo ,_c ':_i.js:

’

ah

M= 38.5 % 20(1 - cos @3 - 39 § .5 zo sin @ + 234 9

-

= 1004.9 - 770 595 “f793h$in,¢"q B .-'ff':ﬁi"f*

g
=

The bending moment diagram. iq shown in, figure 4 y noa

L2 .'_‘:,f.-:--.--.-' . . A S T N ;—.

.....

Review of Methods of Galcula%fon._

ST s ..:.-"'k;'.‘ - L R AR s !.'f':.-.-’

PR o

T Eb-ﬁ B

When the ehape of the median llnq gf theéframe deviatee
coneiderably from & circle o elligsau or. when there are addi—
tional. internal hraaing memhers incorporaﬁeq in the frame, the
claasical analytic methqu of caleculation, can eeldom ‘he use&
The numerical or graphic procedures Euggeated_bg Lundquiet and
Burke (reference 6) and Hoff (reference 7) and the coiumn -
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analogy Aevelqped by Hardy Cross and .recently described .for i

the bensfit of aeronautical engineers by du Plantier (refer-

ence 8) are ueeful in the former case ~ that 1s, when -the

momernts have to be determined in a closed ring without inter- v

nal bracings. In the pudlication by Lundquist and Burke,

equations are also presented for the case "of '‘a ring having

one internal bYracing element. It is bellieved that the pro-

-cedures descrlibved in the present report wlll be found reason-

ably simple even when several internal bracing members are in-

corporated in a frame of arbdblétrary shape.. _ . = . .. _.._.. o =
It will be shown in the next article how the relaxation

method can be employed to calculate the hending moments in an

"egg shape" frame losded symmetrically with two -equal and 'op~-

posite forces., The egg shape in question is the combinatdon.

of two arca of clirecles and two gtraight lines. It ig believed

that the median line of every fuselage frame can be repre-. -

sented with sufficient accuracy by arcs of circles and straight

lines, : ) " .- . H

:l!l

As the determinetion of the influence coefficlentas of
arcs of circles 1s & cumbersome task because of .the small dif-~ -
ferences of large numbers involved, tables and graphs of in-
fluence coefflclieptp. have been prepared and presented for mse »
in pert IV o?’the'pieéent investigation (refersnce 5). This
part IV, entitled Influence Coefficients of .Curved Bars for

Distortions in Theilr Own Plane, 18 intended for use in future 4
frame calculations 1n the same manner as tables of trlgopo-
metric or hyperboliec funotions are ushd.’ v T Tt TE

It was found- that a result  of ‘suffitient accuracy can be
obtained by the relaxation method in a reasonabdly small number
of steps only if the computef“céﬁ‘make 2" good guess regarding
the distoried shape of the structure. Unfortunately, it 1is
hard to visualize the amounfs of.rotation:bhe édunds of the in-
dividual elements of the frame undergo, For this reason, a
second type of numerical approach ie presented. This uses .
thé .ejierdtiions table of the.'relaxation'mébthod d4-1tes sfarting.
point and reaches the answer to the problem through a number
of golutions of two or thrdé ‘simurfandsus iinedf equations. t
The procedure is denoted as the "growing unit" procedure. It
is applied to the present problem and gives substantially the
same resulits as- the:rdlakatlon methed.- ' ~ -

N T S L R LY s o . FECIEE - TR S 0 f

For acheck of the results thé «problém was ‘also solved
by the graphic’procedure df referends 2,' In addftion, the
system of simulitaneous equations représented by the operations
table was . solved with ,the- aid .of the "Matrix calculds. 'This e

[ B
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latter approach is discussed in the appendix, but the results
of the calculations are presented in this chapter for the pur—
pose of a comparison with the results reached by the variocus’
other methods. The agreement i1s found to be good.

Finally, the results of one more comparison are given.

It may be seen from reference 5 that the influence coeffi-
cienis ealcnlated on the basis of inextensional deformations
differ considerably from those obtained when the extensions
and. the shearing deformatione of the curved barse are taken,,
into account. In the last solution of the-present problenm
the operations table was recalculated using the "inextensionall
influence coefficients. It turned out that the bending moment
distribution obtalned through a matrix esolution of this modi-.
fied operations table was practically the same as that calcu~
lated earlier on the basis of the more accurate operations
table.

In all the problems discussed in this report the crosa-
sectional dimensions of the ring are considered small as com-
pared to the radius ‘of curvature -of the ring.. Gonsequently.
the distortions of the ring elements can be calculated fram |
formulas based on the linearity of the stress distribution = -
rather then the hyperBolic law valid for curved beams. Simi-
larly, in probleme involving shear flow the lever arm of the
shear flow - that is, the distance of the sheet from the neu-
tral axis of the ring section ~ is neglected.

RS e

Basic Data of the Egg-Shape Ring

e -

‘Phe dimensions of the. ring are given in figure 5. The
shape of the median line 1s taken from reference, 7 and can be
obtained by drawing the two circles of 20-inch snd 25-inch
radius, respectively, with their centers 25 inches apart, and
the common tangents to the-two circles. _It.follows from the
geometry of the Tigure that fthe angle. subtended by,arc T AB 1is
78.46%, and that subtended by are ©CD 418 101. 549

It is assurmed that-the frame is manufactured: by bending
an aluminum alloy I~section to the required shape. The area
‘of the” I-section is 0..610.:sguare .lnch, its maximum moment of
inertia 0.952 inch* The deformations of the ring under the
loads depend upon_the bending, extensional, and shearing rigid-
ities of its sectlon. {'It ‘was -gshown in:neference 5 that the
shearing rigidity has a considerable effect upon the magnitude
of the influence: poefficients. . An "effective shear area' A¥
waa, btherefore, defrned.in-auch a manner ‘thet the strain;_
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energy in shear stored in an element:gf-the -beam of'an infin-
ltesimal. length'-q@ could be calcyl@t@d from the- simple fo:—w
mula Lot = e ek . . . '...,. St o T

FR .

S .
R dUshear = (V /BEA*)dL

where V 1is the shear force in the section and E 1s Young's
modulus. The ratio: , A¥/A, .where A 18 the actual .cross-
sectional area of the beam, was denoted by £ and may be
termed the "shear rigldity factor, It dependp upon, the shape
of the cross section and the' value of G/E where G 18 the
gshear’ modulus. . In. rsference &5, formulas, were developed for
the calvulation “of ‘the sheax rigidity factor for some repre-
sentative eross— sectimnal ehapes g N o . .
In the case of the Insection shown in figure 5, the value
of ¢ can be calculated from equation {(10) of reference 5.
The computation gives 4* = (A = 0,081 square inch, It may be
noted trat with the I-section in question the effective shear
area 1s almost exactlv the area of the webd multiplied by the
ratio G/B, _ :

In the calcﬁl@tibns_that follow, E 1s assumed to be -
10.5 x 10€ psi. Wigh this:value EI becomes 107 pound-inches”.
The ratio G/B was teken.as 0.385. B e e

Caleulation of the Influence Coefficlents

Since all éompuha%ibnél work was carried out on sight
bank ecalculating machines, not more than eight figures were
kept in %he calculatiohs _— .

Are AB.- The angle subtended by the arc of circ}e vas
dencted B 1in reference 5., The parameter ¢ was discussed
in the p:eceding article,: In the case of arc AB;;the values.
are: : T o i .

B = 1, 3694384 radians g = A*/A = 0. 1331058

The section- length parameter ¥ was defined 1n equation (18)
of reference 5. In the case of arc AB B .

;g;,?;y,g AL /I = 480 8619 e

.
N

where I 1is ths 1ength of the are. The parameters g and A
“were defined in equation (19) of referencea 5. Substitution
yields

o

N

i
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The influence coefficients

8

€= 1.+ (B /Y) + €B°/YE). = 1.0332
A=1+ (B3/¥) - (B®/YE) = 0,9746

i

25

aré obtained éé-ratios of the nu-

merator and denominator determinants. PFirst, the denominator
is computed from squation (2la) of reference 5; .r .. .
. A = 0.00521084 r® -
B SR : Y A _
Zquations (21b) to (2lg) of reference 5 vield the.numerators;
. Ann =:0,01986728 :EIr I
oob,, ®+=0.,040796584 EBL - .7 = v
| Sy o= 0708730762 B -
: Gal, =76,18958066 (BY/r)
F e . B 0 47 EI r
sufoment afnsiy o= :AﬁrﬁF."q-l%:% gci_&-ié;lfﬁi Far chauto
o w : g . Zoes RANERT fuY Toies . L ELrIv ERE
S : Bey = 0'198042§% (gﬁﬁtifs: R .
! : : -

wroxen b

"

K

. -

tond2 IR
SRRl S

4+ S AT
S - 2 1
L ORI I

Py
nn
L)
rn
———
tn
]
rr
———
tr
——
tt

Dpnld
Drn/ A
Atn/A
Apyp/A
Mg/ A

Ay /A

A unit displacement is

rotation asg 10°%

in the computations.
With

plied by 10"%,

radian,

in
Hence

Lo H
PrR~

3.81268 (BI/r)

-7;82896 (E1/r®)
5.24054 (BI/r°)
26.7866 (BI/r®)’
~27.4816 (EI/r®)

38.0059 (BI/»®)

-4
assuned as 10 .

T%q-iéflﬁénce coefficients are noé'ﬁbtqin?d“by &iviéidn:

- -

(186)

inch, and a unis

order %o obtain conven}ent nunbers
the values listed must be multi-
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s:uuBlfr #3650 % 10° tnch-pousds
-=ﬂqE1/p8(§sEfslx-104'pounds =

BI/r°

= i

.125 x 10* pounds per inch

Nt . RPN I T 1. LI

the final values of .théoknfluence coeffidients become:

2

nn = 190.63; inch:ﬁouﬁds p;r 107 radtan )

rn =L:i§:5$22¢§6uﬁds§ef légiﬁ;aégan

tn = 13.1Qk4 pounds pen leigradian (17)
re = 3.3483§;pquqa Régv10~fignch (

tr = ~-3.43520 poundsper 10;4L1nch

Tt = 4.7507 pounds per 107* inch )

Strajgsht bar 'BC.- For the stralght bar simple formulas
are glven in equatlions (25), reference 5. Symbol t was as-
sumed to be 0.13305785. As long as thb’ same value of §{ i
taken consistently in the calculation of the influence coeffi-
clents of any one portion of the frame, it 1is of liftle- -lmpor-
tance whether '3xh8%4% the same Value'iéuﬁ%eh“fbr 211l the por-
tions. A change in ¢ from one portion to another is equiv-
alent to a slight vapletion in the cross:sgﬁtional ghape.

The differencs in'Fhe“two values of - ¥ given corresponds to
& change in ths gress~sectional shape that is well within man-
ufacturing toletadces. The following'data of the straight

bar are nseded: PRy o= ot
L = 24,4949 inches. - ¥ = 38514588
Eguations (25) ofi,reference 5 give: . B
';:'1\ .0oaa b R "‘3 ™
nn = 137.232 inch-poundsper 10™% radian
rn = -8.10267 poundsper 10 padien - i 1i
_€\ ca o ptadte od we o 2d geradpue VDL s
n = . : =1 - + 3 4. - . ..
e ands bl ozspfev st Ena8n L ESGC RSGS
— gery o7 (18)
rr = 0.66158 pound per 10™% inch
%-;‘ = 0
tt = 26.2058 pounds per 10—4 inch o

|
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Are

£

The numerator.and. denominator determinants were calculated as
The influence

before.

' "'.".1'- . d o s
; R T
N - nn.
13 s N :
. . ' —
iy rn
4y e AN
- PR —
5 omNd s tn
.. - b -
e r - T
Tty B Y v r.r_.l.'
- - . . . P -
L l-f 3 - tr
3 ° ' NI -';) L~
* B ICIAR SRRIp 3 I
- e T 0
iy AT
. : [ A f PR .:,
¥With the values -~

. ﬁl/f?

s S el

¢D:: .-

ag8.

b
r

‘2w

. Ef/r

i EI/:S

STl o IS
H - R

'Q:l%%os?sgw—'
'1359.961

©1,021226
0.983760

k.7721543 radiane

it

1

27

coefficients have the following values:

"f"‘«

Y. 778386 (T2
f-e 911804 (EI/r )

-nu

4

3. 279169 (EI/r )
19, 33230 (8 I/r )

~13.89515" (EI/r )

. . 4
40 X 10

=

5 1 6 X 10 pounds'

tt R .

.tﬁe:ihfluencé;eoefficiqntgf%ggdﬁe:

- . 4

e,
A

- '

A

o~
oty

13 ,70964 (EI/;-) "

1h§h¥§6ﬁﬂas

L

-~
. -
o~

(A
i
TR TR
'9, W
L |
TaTrO
-7?“??1
e » .
LEoas a
T zaf T
T Al b
. Yo . 3 -
P
Lo P
ER o
:—-‘.fe__.. [
3
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fh = 151.135 inch-pounds per 10 °© radian ]
Tn = -ll.Qﬁﬁggupoqndspe;_ldf4 radian
tn = 5.24667 pounds .per 10"* radtan )
£ = 1.24047 pounds per.10* inch p (20
tr = ~0.88929 poundsper 10~% inch
tt = 0.8774 pound per 10~% inch

'f” " The“InfluencezGOefficients at the Flxed Epd e At

tfay = v

In the example of the preceding chapter.'equil&brium had
to be established only at point A of figure 1, since at the
fixed ende B and O©C  of the arcs any reaction forces and
moments were available. For this reasoh, only point A was
balanced in the relaxation procedure, and the effect of dils-
placemente of point 4 wupon the fixed ends of the arcs was
not investigated. The: situatlan 1s different 1n the case of
the frame shown in figure 5. There three points 4, B, and O
are displaced in the Ielaxatien ‘procedure. Gonsequently, the
forces and moments caused, for example, at A and C by dis-
placements of point B must bhe determined. As in the pre-
vious example, only a single motion is undertaken at a time
in the relaxation progedure, : For instance, point B is dis-
placed radially and at the same time it 1is prevented from
moving tangentially and from rotating. Simultaneously, points
A and 0§ are considered rigidly fixed in their positions.

The influsence coefficients calculated mp to this point
represens the forces and. moments necessary at the point that
moves, while the other end of the curved or stralght beam is
considered rigidly fixed. Simple esquilidbrium considerations
suffice for the caleulation of the reactlons at the fixed end,
when the forces and the mdmenf at the movable end are known,
These reactions also can be reduced to thHe influence coeffi-
cient form. In order to distinguish between the two groups
of influence coefficients, the. former are denoted as the in-
fluence coefficients for the movable end, the latter as’those
for the fixed end. In the formulae the subsgeript M refers
to the former, subscript F to the latter,. If there is no

pdssibility for misunderstanding, as in the preceding example,

the subscript may be omitted.

In determining the sign ¢of the forces and moments the
beam convention shown 1in figure 8a is used.

b= N

L
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The influence coefficients et the fixed end were calcu-
lz2ted with the aid of’ ecuations (27), (28), and (29) of refer—
ence 5. For arc AB their values are: . : p

fiip = 0.33433 (BI/r)

Tap = -3.56887 (BI/r°)

fap = 8.71889 (BI/r°) " 2 (21
’ 21
— C . 3
rry = 21.5691 (BI/r")
‘trp = -31.7417 (E1/77)
"tty = 34.5276 (BI/r®)
Substitution gives
nngp = 16.7165 1hqﬁéppgédg;ﬁ§§ 107* r&dian _7
Thy = ~8.92316 potnds'per 10" radian’ “'11
EEF = 21 797 pounds per 1074 radian s'" e
. . K S ':""_-'.' (22).
TPy = 2.69614 pounds per 10 ~s inch
E}F;Ei%$z§677i’p9undsper’10—4‘§gdh_j"'
'?}é 2 4?31595 pbunds per 10“4'iﬂéhf‘ A
R LA : SR - wride
.:.7'.'. - T lxrnon i - R A
For the g % t portion'“BG there is obtained‘- i R I
i ‘..-“.- ".’.'fv"x 'f:':-:—;:i-.i. 3--;—'\{' r_--;-..;_--; .1..;;.;,L_-. t o
- Tnh% = =817 242 inch poundsper 10.%% radian’ .
SR -1--..:r:.. - 2 Yomaam Lot e
":;~? f §°10267 pounds per 10 ;adian s s e
{;F::‘ 0 I TN » L e ma tma w
,\ teciv U . - Iz ,.-5':;;._'. : i (23)
Try = -0, 66158 poundsper 10 7" ingh Foe? AR
LT 21 . . n 2 - 'Zt:,-_,l';.'”,‘--"
't.'r'F.'.-’.'._ O';‘ - L E - ;.f. s, -i,- .-.E_z
—~ ) o
ﬁt?' ‘3P 2058 pounds per 10 Sipeli: i
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Por arc OD. the influence. cbe¥flcisnte for the fixed
end will not bhe-:needed invfhe.relaxation procedure; Howevsr,
it 4s convenient to have them: fuvr &éhaéking plrposes: '

Adp =« 37.649 inch pouiids per 10" * radtan h

EEF = -7;@524’ﬁouﬂdsper~10_3:iadian

EEF = 9.7881'pounds per 10*?'¥adian > (24)
frp = 1.119416 pounds per .10 > inch

E;F = -1.63755 'pounds per 10 - inch

ttp = 0.696839 .pound per 10.° inch j

Operations Table

In the, operatisis table - -tae forices .and moments caused
by the individunal o7srations are listed. &an individual oper-
ation consists of a uisplacement;, or rotation, of one point
of tke frame while all the other end points of the individual
arcs considered are reld rigidly fixed. "~ The operations table
can be easlly established once the influence coefficiente are

known.- v

Care must be exerclised in the mattsér of sigans. The bean
convention is not suitable for use in the operations table,
since according to 1t theisigns of T and N -‘depend upon
whether T &and N act at the right end or the left end of
the arec. Tor this reason, the rigid frame convention shown
in figure 6b will be used.~tIn this conveitiod ‘clockwise mo~
ments are positive at either end of the arc. Similarly, a
tangentlial force 1is positive 1f 1ts direction corresponda to
proceeding in a clockwise sense along the- .47¢.,  The radial

foroe 1s positive when it acts toward the center of curvature.

Moreover, the operations table 1s et up by considering the
effect of each operation upon the constraint rather than upen
the beam. In other words,the table lists the forces exerted
ypen the imaginary supports (or constraints) when one of the
points is displaced,. ' ‘ oot .

In the particular problem at hand, points 4 and D
will certalnly remain in the plane of symmetry when the dis-
tortions of the frame are caused by the symmetric loading
ehown in figure 5. It follows further from the symmetry
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.that ;the-horizoantal -tgrgente gk*:4 and D will-remaln- ‘horl~-
zontal. On the other hand, the distance betwéen A and D
will change under the loading’- Is:suffices, thereforey for
degeribing all possible redajive d&tsplacements toe-.considerh:-
the beam as rigidly fixzxed-at- D and to allowiseebiovon: A <a--
single -degree .of freedom- of motion: namely, thablofca verti-T
cal, diaplaqemenb (See,;fon instance. referencesa.)o_‘?: =t
N I ¢ _-;._«1:_,_;1 P e lh omv . e astbx A
.y In-thes fiﬁst row | ‘of. the operations tabler(bable=6) the-
effect of a radigl &isplacement -of point  A-‘'is lkisted.: Erom
equations (17) .the radial force acting upon beam::AB -in mde+
tién A is 3, 34833 urds when section . & 8 displaBed  the ‘mult
distance (10-% i4m the positive rgéisl direction. . .Cdnsd~
.quently, the- reactiomnoﬁ this force; that is, r-3:34833 gounds
will be -exerted upon sthe constraint at A, The: dffect .of .tHe
.game .mot Lon uporw ‘the tfiixed end of the-beam at sdectionchB s bzc
given by the influence cosfficients for the fixed verd .cod-tie
tained in equations (22). These influence coefficients must !
again be mulxiblied by -1 in order to obtain the effect of
‘the displacément upow the constraint The final values Pre.
ot re it aan wanaulhnl L f

: Ny = 8.923k8 “Anch~-pounds - Rg = -2, 69614 pounds TB 3~96?7l pounds

A s pa D

With these forces the change from the ble am'honféﬁtion Wi'e d’ 2
for. the Wrfluence do&fffodients to the rigid frame convention
used in the operationg tadle did not entall any changﬂs in | .
sign, as may be seen from a cﬂmnarison 5F figur%s ‘Ba anﬁ‘&h""
It may he noted that a posiﬁiVe'radial deflbEtton’ of the Peam
et point A caused a negabtive radiml’ forte’ 0" g8t’ upon‘the
constraint at. A. This could be expebtsd, Bince an upWwara
force is felt if the movable end of the slastic cantilever
beam shown in figure 6z is pudheds down, -_H- ;
o sttt LE T Rt S .
The' sacond row of the operatlons tablé shows the' effect

of & rotation of the section at B. If end section B of beanm
JAB ' is rotated through.a positive angle)of 10~% radlian, the
forces and the moment caused at are given by ;he influencs
coefficients for the fixed end- (eqﬁattonf t289)- ‘Urily the val-
ue of Ri 1is,listed in the operationd table; “$iHe3Y1E716 not
neceseary to balance Ny and Tx. Becauss of the syumetry of
structure and 1oading, the point symmetrically situated to B
would always be: displaced in the game manner as 'B; is. and

its displacement ‘Would cause & tensile force and a foment

which would balance N, and T,. (See alsc reference 9. )

The effect of the rotation of section B of beam BC upon the
fixed end at C ie represented by the influence coefficients
of equations (23). of course, all these coefficients are



o

32 NACA TN- Nous 298."

multib]ﬁeﬁ Yy —l‘befare Bhtering them 1n the operaxions.tahly

B AR L o R "- I--,-(.

Z-The effect. of a. rotatdon of section B upon the forceﬂf‘
and ‘th'e’ mbment' at’. B .:iw'wiven by combinatiomnms: of the influ-.
ence ccefficlemty for the movable .end .af "beams B : and -~ BC.
It-mitet not bde fdtgptten, however, that in the caleculation.
the rigid frame: cohvention must dbe:vsed in determining tha.;x
corresct sign of the influence coefficientes. According to fig-
ures. 6a. ‘and 6b at* the right wend of+-the beam' AB-j the’ two sign
gonventions are identical,. but at the left’ ehd of: beam BL. .-
only the signs ‘0of the radial force are the- aame “those;.af: ;the
tehgentibli-force and the moment are  opposed:. (Gf fig. Tkt
Displuecements and rotations are considered %p have the :same: !
poeitive’ genseé asg the corresponding forces: pnd moment,, IeEpsc-
tively. v If the multiplication by -1 is aleo-carried moubs Lnr;
order. to obtaln the forces and the momernt acting upon ths -caon-
stradnt; the entidre: calculation can -be given in*the fqllqwimg

11'1’1383 .f'"--- I":-'- LT : . 1 o " B 15).1 .J\.l
1. Influance coefficient for : '
beam ~AB - U g RIATIA LG ¢ -190,634 . -19.5724:%.. 13,1014
2. Influencescopﬁficxﬁpﬁ;ﬂor-_gqi?',,,,,ﬁ wia "o <t
beam . BC. R rt ke S :J;\_ﬁﬁ 232 ..—8vl026” ) Q#;
T PO RO T RPN Y2 ¥ ARG SN ) |
3. Row (2) multiplied by -1, po ob-.. N EIE RS T ST S
talinieoefficients correﬁponding ce - jéﬁ_ S s e
toyposlitive. rotatlon aceording - . com e B Mg
to »igld, frame: pOpventienrﬁ.r _.~137 232 ) 8 10267, "DH_\
e Tl s fda T g - T : -"”. fUemoa b
4, Signs of preceding 1ine changed . ”gzuag Sb e s
to conform with rigid frame con-
7wention fq; forcg,@nd moment . 137, 232 v 40267 0
Iy :“' e b . . e * rye
5. Sum of rowg-r(l) a.nd (.45 327 866 ',..11 4597 " 13 1014
LN ) R N R "-} :
6 . Row (5) multip;l.d.ea by ..1 to give . -
-\effect upop\popstr&int g -327 866 ’-llu4697 -13 1@14
e e AT ey N i+ :-{- * - :: ’2".""“: -2

ety T b o . Fe ety
,-pincg the gplculation p; the other items 1nuthe oneratioas
table, ;s,cqrripﬂhout gccording.to the same.princip;aﬁj further

detalla BE8- nnlagixgn‘ g ard e Diw
Chopr Mg vl Rl T2 T S e Tl e N
.\.-.'-"T'{- - = e vt ) 2 s .lha

ARLECIND SN G B SR 26 A PO S . S RT3 'f Pl
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e $olut£on of the Problem by Relaxation
The pirpose. of the relaxations ie tq £ind such multipli—
ers for operations 1-- to 7. as result in. RA_ 500 pounds

and in vanishing valués for all the forces and momentg_ NB_'.
to Tgy. The value of 500 pounds is stated.instead of 1000

pounés, since because of the symmetry only one~half of the
stracture;;1s considered. There is no need for balancecing the
forces 4nd. moments.: Ny, Tpg. Np, and . Pp., since theJ are au-

tomatlcally balanced when the 1eft hand half of the ring under—‘
goes distortions symmetric to those undertaken with.the right-
hapd half. Moreover, because of the conditions of equilibrium
of the external forces, a residual. forcs Rp = 500 must be

obtained automatically at point D when all the other resid-
ualsara” brought down to negligibly small quantities. This
force 1s then balanced by bne—half of the lCOO-pound external
force at D. "l i .t - P

\ -..;;; L. .

In working out the present problem it was thought advan-"
tageous to begin with a rough guess as to the final shape of
distortions of the frame I 1t was. cienvenlient to aornsider sec-
~tien D as rigildly fixed.and to assunme reasonable amounts of
radial and tangential dieplacements for €achH 8f potntes &, B, .
and C. The amounts chosen are given ‘below together with’ the:;
forcee and moments causéd by their simultaenedous oOccurrence.

Ae may be seen,. the radial- and tangential displacemente listed
correspond to displacements of points B. and ¢ upward and -3i- -
to the left, and ‘to an upward displacement of point ~“A, The
rotation of was -agsumed to be. clopkwise, that of c . s
counterclockwise The forces and: moments.were: obtained by
adding up“porresponding values of- the- operations .table after

the- rows, were multiplied by ‘the- faeto?s chceen ,IheJdiptor-"
‘tions ars: St

- P S

. : . .:~ t T i

P - et -

?A‘= ~100 unitsr vy = Z'nnits f@Bi 50 units—-uB = Jgﬁ“ﬁhfts'“

R - P - i ._‘__ ..
D T ... w *

Téliunits'

3 . e

ﬁd'=:~0 ‘5 units 'vc = 50 units eud'

The forces angd . moments fesulting from the distortions are:

LT - ~ .
e - e IR

‘B, "f ,NBTqA- Rg:.: gﬁ'i _ FF“: 'f'}c‘d‘. XS on

-
v
? -

98.839 ,.-145.67 T EEiZ2  2134.9 °© -368.6 - -mwl6s77- -11.57
. . i EEEE o oo SeE I .

- e e e PRSI W,

S e
Xl

P e e wes
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The set of distortions listed can be considered as a
"group displacement." It will be denoted as operation [8]:-
In the course of the relaxations 1t is advantageous to make
use of other combinations of the elementary operations. Two .
such comblingtions were used in the relaxation table (table 7).

They are listed below. .

Operatiorn [9] ' - o
Ry Y3 Rg Ty Fe. By T4
~100(up+ug) =-396,771 1810:i4 -B343.52 476.28 524.667 88.929 87.75

-

Operation [10]

[9] - 120 v, = 5.03 239 5 -19.98 -O 85 524, 667 88.929 87. 75 _
In operation[gj the shape and phe length of the straight :;%
beam {beam ;BC) do not change. Opsrations of this kind are e
denoted as "block displacements." In & block displacement

rart of the structure undergoss a rigid body displacement.

Lt

Table 7.4 Piret Relaxatibn Table_  ST =
: ; :l,‘, -Td.:.‘i_'. T - .
Operation | | RA : Né.,‘ RB ‘ .iB-J» N . ”lRC_ -‘TC'fﬂ
| 98,839 | -145.67,, |- 26.132 | -134<9 h-*~368.6 'c&-16.77" 1167 ,
0.83[9]  ]~L19.03 .| 393, 94 '~108.08 | 142.58i} ~:157.4 |« 26,887 25,33 7
1 :e20.19 | 2a7.8% | -76.93 | 7,38 ['-211.2. | . 9,81, 37.90 :
-26 [8] [ 67.40 | '<286.74 ‘| 100,25 | fsﬁﬂ__. . 202,6 . | ~16.64 |- 0 ;
47.21 | -39.87 | 123,32 |:o=78,20 | -8.6 ‘|7 ~6.63 | 37,90
-2 [4] - =7.94 | . 26,20 | m6.87 |- 61490 o "0 ~52.41
.89.27° | -13.17 T M6.87 '] ~16.29 ~8.6 ~6.6% | -14,51
0.1 [10] 0.50 28.95 | -2.00 -0.09 52.5 8.89 8.72
ey ABIT | 10,78 |o 14,46 4 -19.38:] U 43,97 | 2.26 | =5.79
0.15 [6] |70 -9.19 -1.22 o ~43.3 ~0,44 | ~0,79 .
39.77 1.594 | 13.28 | -16.88 | .67 | - 1,82 | -6.58 |
5 [1] ~16.74 44.6 -13.48 19.84 |+ -~ - - i
]
23,08 | 46.2.. (., -0.25% | 1344& |~ 1 0.6. 1,82 | =6.658
0.14 [2] Py I -as.9 1.61 -1.83 -8.57 1.13 o
24,28 | . 0.3 | .1.86 |.71.63 | ."+B.0 2.95 | ~6.58
-0.028 [5] S 1.7 0.23 o |, 81 (., 008 | 0.15
b4,28 | "v2.0 T| 2.1 T 1,63 0.1 3.03 | =6.43
~0,15 [ 7] ' 0 0 -3.93 0.5 0.08 4,06
?:4:.28 2.0 201 -203 006 3.1 -2-37
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-

Instead of balancing the largest residual force at each
stage, 1% was found. more convenient to adopt a particular pro-
cedure. After operation [8] was completed, an attempt wads

- made to reduce all the residuals but Ry to negliglibly small
quantities, while keeping Rp as large as possible. . The pur-

. .hose was to establish a distorted shaps corresponding to any
finite radial. fTorce at 4 and negligibly small residuals at
-points B and, O, Division ‘0of 500 pounds by the radial force
.8t A so obtained yields the factor by which the complete set

“of operatione undertaken must be multiplied in order to obtain

e - Table 8.~ check'mgﬁ;é

Operation RA i} NB RB ' TB NC N RC TC
~107 v, | 358.271 | -954.671| 288.487 | ~424.545

2.1¢ W 19.093 | -701.633| 24.545. _-28;037 -151,058:. 17.340 0

25 s ~67.404 | 286.742|-100.248 |  85.880 202,567 | 16.540 0

72 up  [-285.675 | 943.301 (-247.334 | 2228.875| O | O -|-1886.818"
-0.378 wg| l | 23.149| ~5.063|. o 1q9:éq§f 1.117 1.983
50 vy h"~hl_.: | 405,134 sg,ovejiﬂ 0 - -147.811 |-95.103 | . 744.465'
715 uil - 0 . 0 .|-186k.5u3 | s78.301 | 68.275 | 1926.977
Sum. 24.286 ' 2.022 1.592»f¢ u_,jsg. 6.868 .3.187 3 -2.;22.

~ In ' tabvle 7 ‘the object1Ve was attained to an accuracy of
13 percent in -nine operations following overation {8]. Before
the relaxation was continued, a ‘check table (table 8) was then
established. Some slight differences were found in the re=-
sults, and the-residusls of the cheel table were further Te-
laxed in 1l more operations (in table 9).

s
[l
b
.
v
-
N
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‘Table.9.- Seconﬁﬂﬂelaxatign.Tqble:
Operation Ry - Ng . | . By Ty . | . -Hg ‘BRg | .Tg |
Results of .| o - ,.l ' r . _ ? e
Check Tabls | P4.286 2.022 | 1.592 | -2.369 0.868 3.167 | -2.322
261 7t . o 16.205°| 1.323 | 0. 15.912 | ~3.80L [.~1.779
Lo | 24,286 | 18.287 | 2.915 | -2.369 | -5,0u4 | ~0.637 | k101
~0.15 [ 7] - 0 0. . | -3.931 | +0.787 | 0,133 | &.062
24,086 | 18.227 | 2.915 | -6.300 | -4.257 | ~0.504 |.£0.039
1.401) ~4.688 | 12.491 | -3.775 | 5.555 ' )
- 19.598 30.718 | -0,860 | -Q,7H5 ~4.257 | -0.504 | ~0.039
0.094 [2] 0.837 | —-30.819 1.078 | -1.231 -5.757°| 0.762
20.435 -0.101 0.218 | -1.976 | -10.014 0.258 | -0.039
-0.0347 [5] : 2.125 |. 0.281 0 | 10.006 | 0.103 | +0.182
'20.435 | 2.02% | 0.499 | ~1.976 | -0.008 | 0.361 | 0.143
~0.025 [4] -0.059 0.328 | -0.086 0,774 0 0 " =0.655
| 20.336 | 2.352 | 0.413 | -1.202 | -~0.008 | 0.361 | —0.512 |
10.2 1] ~0.669 1.78% | -0.5%9 | 0.793
19.667 4,136 | ~0.126 | -0.409 | -0.008 0.361 | =D.512 |
0.0126 [2] 0,112 | .-k,136 0.1k | ~0,165 | ~0.77 0.102 0 1
| " 19.779 | o© 0.018 | -0,57% | -0.778 0.463 | ~0.512
~0.0027 (5] S 404165 4+0.022 | .0 +0.779 +0.008 0.01h
N 19.779 | 0.165 | 0.040 | -0.57% | 0,001 0.471 | -0.k498
0.1 (1] | =0.335 0.892 ~0.270 0.397 :
- 1900 | 1,057 - | 0.230 ~0.177 | 0.001 0.471 | ~0.k498
0.002 [2] 0.017 | ~0.656 0.023 | -0.026 | -0.222 0.016
19461 I 0oL | 0,207 | <6.203 I'-0.321 | 0.437 | -0.4g8
Results of S . S A :
& second ol S U IR P . .
check 119471 | 04380 ~0,199 | -0.266. .| ~0.124 0.487 |} ~0.445

After these the greatest residual force at points B and O

was 2.5 percent of the radial force obtained at point

4.

A

second check, details of which are not given in this report,
regulted in the residunals listed in the last row of table 9.

Since the radial force at point

A had the value

e ]

=01
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e;uq,_ﬁ,,”i_, r 3* . 19, 471 pounde
' N .:;‘ o ,‘ Foye o oen -- AT et e e
all the operations paﬂ £8 be multiplied %v the factor LT
A Ut ewral vzo ad

SO maee ] T : - . - c s
el s e 500/J9 471 25.EE T YL i:;' o TR

‘-:-’. S s

in order %o obtain the final deflected shape of the frame.
The final . deflections are given below:

- _}I s _
vy = _o 2704 incﬁ" wB = 0. 005774 radian vB =ro 06420 inch

B Y

up = -0 ;8495 1568’ wo = =0.0010667 radian v =0 ‘13353 ‘ineh j(2s)
k 54 l.}
s .ot IR

ud q0¢18569"£nch ;?:?‘!‘f o f '-7'- Ly Eae -

T

T RE amoae S - - = - .
- . ——

L

Iﬁ fhay!be ' seen- that the firat guess for the deflected

shape. as given 1n operation [8], differed considerably from
""" Neverghe;ess, only a comparatively small num-

ber “of- reiaxations was: required for the solution of the prodb-
lem. The~deflected. shape ig shown in figure 8, Next, the
‘bending moment distribu%ion ie caleulated. TFor this purpose,
the tangential fprce apd the bending moment at point 4 are
needed. These are caused by the displacements (and rotations)
of points A and.. B, and can be calculated with the aid of
the influence coefficlents given in equations (17) and (22)
The calculation follows:

Caused by: va=10"*% v,2-0.2704 wp=10"* wp=0.005774. vz=10""

NA -19.5724 52924 16.7165 965 -8.92216
TA -3.4352 ©288.78 21.7972 1258.57 -3.96771
Caused by: vy=0,06420 up=10"* wup=-0.18495 Sum

¥, | -5728 "21.7972  -40314 7847 inch-pounds
Ty -:I_.i%§§47.27 4.31595 -7982.35 - 17.73 pounds

- - . - - —

Since influence coefficients were used in the calculation
of the moment and the tensile force at &, the values ob-
tained represent the action upon the gurved beam; and the
slgns are in accordance with the beam convention. It must Dbe
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noted, however, that the signs of the displacements used in

the preceding calculations aleso had to be taken according to
the beam convention. In. the present cage, this requirement .
did not cause any change in the signs of the displacements-

obtained from the relaxations, since the displacements and

the rotation at the right end o6f the curved beam, and the ra-

dial displacement at the left end have the game sign for the

two conventions. T : . .

With the values of NA and Tp so obtalned, and with
Rp = ~500 pounds, the behding moments were calgulated for sev-

eral points along the medlan line of the ring. The moment
‘distribution ie shown in figure 9. . The- bending. moment, the
redial force, and the tangential force at point D ‘were also
calculated from the influence coefficlents in .order .Lo. obtqin
a check of the accuracy of the caleculations, Care must be T
takem,ta trmansform Lhe signs of }he F}splacements at point C

to. conform witp thq baam conventiof The computations fallow: .

‘ \'x‘J [ -

Oéusgiqb;ﬁ w¢ ::ﬁ§:¥; wg = 6I0010667 g . 1q f‘ vg = 6'13353

Nﬁ:jch:t_;iézﬂsﬁgﬂ:;xbﬂ“;;? %05?:n <. n?¢§5a4 -: -9818 »

RG LTI hewBB2g - : ';'_ﬂf*?f-'-"-hzréﬁ et 119416. o le95,7 "

ppe TEY §ibsame it o 01104185 -}~l!°3?55-5 <}386144 9 ‘

R I S

Caused by: ug & 107 ug 2lo. 183097 :. c-x v Bhil Sy e

¥p' - 9.7881%  iavel? . 8501 ingh-pounds )

By TP _1.%878577 Lisoo 12483 pounds .

5 0.695839  1274.01 ~7.04 pounds )
These values show that the accurac& is suffiéieﬁt for éﬂ; .

gineering purposes. The radial force obtained deviates about’
3.4 percent from the actual -500 pounds. The bending moment is
ghown as 9088 inch-pounds in figure 9. The deviation of the
average of the two values from any one of the values givea 18
3.3 percent. - The forces TIp and., JLa should add up to zero.

In reality, their sum is 10.69 pounds, which is about 2 1 per-~
cent of EQO'pounds?ufthat is, of one~half the applied load.
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The Growing Unit Procedure

In the growing unit procedure the units of the ring are
combined graduaslly into units of increasing size until finally
the entire ring becomes a single unit. In each step of the
procedure two or three simultaneous linear squations havs to
be solved. The growing unit procedure has been developed,
since in many problems the relaxation procedure is too slowly
convergent,., This is true particularly when the shape or the
loading of the frame does not allow a good guess regarding
the shape of distortions.

When this procedure is applied to the egg-shape frame
loaded by the equal and opposite forces at A and I in flg-
ure 5, it can again be assumed that section D is fixed iIn the
plane, and section A i1s only free to move in a vertical direc-
tion. The first step in the procedure is then to combine
beams AB and BC into one unit A0, This can be accom-
plished by determining wup, VvB, =and wp so as to cause N3y,

Rg, and Tg +to vanish when in turn a unit radial displace-

ment, & unit tangential digplacement, and a unit rotation =are
undertaken individually at points A and O. '

In the present problem section A moves only radlally.
The forces and the moment acting at B when vy = 107% inch
are glven 1In the sscond, third, and fourth columns of the
first row of the operations table (teble 8). The forces &and
the moment caused by the unknown displacements and rotation
at B can be obtained from the seecond, third, and fourth rows
of the operations table. The requiremsnts of the vanishing of
the forces and the moment at B can then be written in the
form:

-327.866 wg + 11.4697 vy ~ 13.1014 ugp -8.92216

2.69614 (28)

11.4697 wp - 4.00991 vy + 3.4352 up

-13,1014 wg + 3.4352 vp - 30,9566 up = -3.96771

Solutlon of the equations gives:

0.0032449289% % 10~ % radian

~0.612145 x 10~ % ineh

w3

hb:]
0.05878271 % 10~ % inen

#®

ug
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The displacements founi'givéﬂﬁfEaito forces .and:'a moment at
c, which can be calculated from the values in the second,
third, . and fourth rows and the' last three ‘dolunrndg of the oper-

ations table._;;“- ‘ SR : s CAsd : ) - cnp
| N, = 4.74é%6?;iﬁch4ﬁéunds Yoo

R, = _o.zvéosgs pound S . (39) " ..,

T, = 1.540448épdﬁn€§- ‘l L

In order.to be able to balance out the forces and the
moment at € as ‘given in eguations (27) secticn C must be
displaced -and. rotated ‘Duxing these motions, however. no uh-
balances must -appear in seetion B. In the .next step’ ‘of the" i
calculations, therefore, section C will be,in turn rotato& ﬁg?
displacednradially,,and displaced tangentially. and’ in each 'PF'f
case.values. of-:wgy ¥R, up will be’ calculated 80, ‘as to D

cause. Nz, R, . and Tp to vanish. When section ' is ro~ ";

tated through a" positive angle of 10 —4 radian, the operatiqns,‘“
table gives: : T R R

' .r’l J

;;reéﬁiéeé'wg.1"1i’£é§7'v§:i'13 1014 up = 61.242

a1l 4597 wB - 4 b0901 v + 8. 4352 up = 8. 10257
._.-lo

,-L3 1014 w;a + 3 4:352 v ~- 30 9566 u_-B = 0 ¥
’ IR - k-

REU . O

It may be seen'that the 1eft hand eide terms of equatioys (283,U,
are identical with those of equations (26). Solution Tof eqpac
tions (2&) yields

~o: 28372447 x 107* radian
'E = f . " . Sty A

vg = 3. 0160675 x 107" tnon ' T (29)

T -t P ST

ug = -0 2146168 x 107 * inon

S

I
e

¥

These displacements cause forces and a moment to appear in ' °°
section C. Their values may. bs calculated with the ald of the

operations table as ‘Defors: -i

L}
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T RERAT

*rﬁ6'= 41, 814055 inch-nounds
iy !

;4;25430 pounds- ) : (30)

m‘

teent ‘. Ré.':.‘

To = -5.624205 pqunds ' .
N o o
PO LI . N - . ) o
In addition,” “%hrees and a moment are caused at C by the unit
rotation of © 4itself (while sections B and D -are held fixed).
These quantities may:be taken directly from the operations
table: . T

A 4 R0 -

-288 367 inch—pqunds=

)

—2 95622 pounds

-+ =
woon,

‘+5,24667 pounds

Consequently, a unit rotatlon at ©, toéethé; with the mo-
tions at B required for Ny,  RBg, .Ty  to vanish, gives rise
to the following forcss. gnd: doment ‘at ~ 0% - :

| @

H e S U 2
6) l Nc = -246.55294 inch-pounds.
neiTy
\
" R, = ~7.25052 pounds .. (31) .
N DR I I R R N
Vs mgﬁé':165§§0975 ﬁé&hds

o .- e -
v a3 -

.-:_._“q; t,\ o e
The effect ofa.unrtradial and =a tangential displacement
of ©, respectively, upon thesfored% and the moment at ©
can be calculated in an analogous mapneér, Agalin, the left-
hand side members.of the equatiuvnd af@“i&éntical with those
of equations (286)1 and (28). The right-hand-side msmbers hgve_w

the values mead ot Lo T tdmanard T LA S ] .
SAABal BeoeE s T wm - —— i gt =

~-8. 10267 ~O 66158,,an¢ O R o e

. ot %3 -- .'-“:: 1(ﬁ s ;. AN T (% . S ‘“ ‘..‘

wvhen C uniergoesfaxuhit Tadial di;placemeﬂt,\and 53 onk

'.L::‘"‘" il NN S
o, O and -26. 2058 SUURRS
e W T

when C undergoes a unit tangential diqplacameqt Sdlution

of the squations glves Lo _ S

el I e e
IS Se 09 i LA T .
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¥B

1]

UB

VB

when C undergoes a

¥B

ug

\p:]

when C undergaes a

NACA TN No.-998

0.08369378 x 10™ % radian
0.2753198 x 107" inch (z2)

0.01629283 x 10~ * 1inch

unit radial displacement, and

~0.0L039843 'x -10"* radian

1Q.7726881 X 10 f

ETRE N I 3

0. 9366781 X 10

inch (33)

~4 inch

unit tangential displacement,

The forces and moments caused at c bv these displace-

+ + L

ments arw

CIre ¢

when O undergoes a

T I “_'.N_Q
T Ry
e g

when © undergoes a

. Fve e pr:.

~4.29430 inch-pounds.- )ﬂ-m-rr A

0. 426967 pound (34)

O 4551558 pound

N

unit. radial disp@agemqgm, and

= _5 624205 ;nch»poundST_

= O 426967 pound Lo (36)

‘n*

24 5464 pounfs

unit tanpential displacement.

{-.0 ." [

The effect of the motion of .0 upon the forces and the
moment at € (vconsidering: B and D as rigidly fixed): is .

agaln taken directly

from the operations table:
i ._'.':‘__-.- T . 3

L L S

~2.95622 inch~pounds
S A - oo

-1,902056 pounds 20 RN ST

H

-0.88929 pound

gl i

Tiras
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when C undergoes a unit radidl d¥sfracémetit, ‘and /-
~Ng:= +5,;24667 inch~pounds
Rc‘f_-g.gqgég pound

Tg = ~-27.0833 pounds
. » T - . [

when C nundergoes a unit tangentlal dieplacement.

_ Altogether, the forcés End moments at 6 becoms, when
G 1is displaced radially and tangentially, raspectively,
through a positive unit distance.

—7.25052 1nch—pounde

Ng =

Rg = -1.4488943 pounds (36)
. f -

Py = -0. 462323 pound

y- : ,

in the case of a radial d.itspl_a;cexn_-e‘__::z;.\‘:,,,___zet_xc'ui_“~

-~

L thee ..N-c = ~10.8708%5 imch-pounds B
v ) ':_.;',_:',} noen e g .11 "'"'.L *q_,_“ . R T
reorma coBg o= L0 48RS pond s foat a Ty W (87)
Tg = -2.5369 pounds
i tnon - ohene z RN .& b~ as by
in the case_ of & t?ngential disp}aeament ;H:iiZ;

Equations (31) (36), and (37) give the) Fortes and the
moment caused in section O by the three Posaihle motions of
secti®dn 04t The's®i¥altes’ correspoﬁﬁ o BuchT A1¥t ortions of
the ring-ks doimot entall uhdalanedsd  Torceds! 0+ Wwbhénts any-
where along the ring except in the end sections A and D,

The values of the-mptiohd atx O:¢momt, howsbewdetermined in
such manner as to balance out the forces and the moment caused
at C. bv the unit radjal”displacpment of- Ax These unbal-
anced forces are listed in equations (27). "The requirements
that Ng, Rgi and-.Tg "must vanigh can be. stated in the form

of the following three simultaneous equations;
\752bo

. -5.7 N s ) 5;5 JIQ
1 ;24885487 3$6°576.885858 u "5 w0 8%9%084345(38)

PP 3 P

B70855700. 5 o4, 74876?

(aghe!

.‘.'u"

fre24e;352é y

l(i ,_D -

-7.25082% W

-10.870875 wg - 0.4623238 vy =~ 2,5369 ug = ~1.540448
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P P .-

The solution of these esquations is

L e CT Fayb e L Lot "

o 003849891 x 10‘* radian

BT |

Z
Q
L}

’ tem - oo . R
oae o LIRS T - - I-.\',

= 0. 4976019 X 10 -4 inch (29)
anrega T

0.6814028. x 10~% ingh

<4
a
I

ug

Thegp-are-thé actual motions bF section € when A 1~
displacasd radially through a positive unit distance, and _when
the motlonsg of" B*Aare suek as'to Tesult 1in vanishihg'forcea
and, momert-at: B,. The total nmotions of B ‘can be’ obtained
by adding up the values corresponding to the following f¥ur
items:

1. Motions of B when 4 15'dieplaced radially; given
by the solutlon,.of eguations (26)

2. Motions of B when .0 .is rotated; these are the
values listéd in equations (29) miltiplied by the
factor O 003849891 taken from equations (39)

. Lo e .,J . 1

3. Motions of B when % is displaced radially; these :
are the values listed in equations (32) multiplied
by the factor -0.4976019 taken from equations (39);
and . FP .

D |

4, Motions of B when ; 4.8 Alisplaced tangentially;
these are the values Iigted in equations (33) mul-
tiplied by the factor O 6814022 taken from equa-
tions (39) It CaF : Y, < bl

Addltion of the indiV1dua1 rotations,'rhpﬁ;l‘diaplace-
ments. énd tangential diaPlacements, respective ¥ yields.

Ere s e Pt
ot , rx‘f( . N X B 1 f\;" ~

cagrn d

o o -

R ﬁLA;-fwé.; “Q 03149#4 ” ;0 rﬂdian*: étuﬁw .
55-‘:‘ vB ""' -'0 23%245 X 10 . inch- '.‘ & f% '_’_ ,(40)
RN Lo . EFTIENYS O SRR CHE
'n”J 'é“uB = 9. 688%035"x lO % ith £ woersnon ke,

L LN R P “‘ “ G0

e ai

It is nossible~npw to determine-the”radial forée at  AC
corregponding to the distorted shape 0of the ring just calcu-
lated.n<This fqacs derends upon the! “Hatlons of’ painbﬁ"%
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and 3B. According to the first entry in the operations. table :
(tadle 6) the radial force at 4 caused by a unit radial ..
displacement of A 18, provided B 4is held fixed, '

RAA = ~-3.348383 pounds

If now A is fixed in ite displaced position and B ie
moved into the position indicated by equations (40), the ra-
dtal force at A caused by these motions can be calculated
from the entries in the first column of'the operations table
(table 6):

R,y = ~0.0214944 X 8.92816 + 0.334245 x 2.69614
+'0,6881085 x 3.96771 = 5.169978 pounds

The total radial force at A ‘is the sum of the prédqding_jﬁb?
forces: “ ' C S o
Ry = Ry, # Ryp = ~0.178352 pound - _(41).

In order to balance ﬁuﬁ.fhe 500-pound external fdrce carried
by one-half of the ring, all the distortions of the ring and
force Ry 1in equation.{41) must be multipiied by the factor

f = -500/0 178352 = -2803, 4448 D e (42)
Multiplication of thé values given in equations (40) and
(39) yields the final &isplacements and rotations.

wp = 0.006025835 radian vy 0,065669293:ii6h_

h

[}

1
o
O
[ ]
5
o
-2
©0
Ly
w0
o,
H
©
o
[
o
H

Fan Y
[
[} ]
A’

ug -0.192?Q§023inqh . - Wg

ve

0.139500Q.1nch ug = -0.191Q027345 inch. |

At the same time the radial displacement-of point A 1is
naturally

-V.A. = =0, 28034448 ineh. . _ T cE 0 R

. . Ve Tl B
C - Lo . --.';.—A

tions the forces and moments at points  “A-'ghd-~"D  gan be__,ﬂ._ﬁ,“

calculated from the influence coefficlients.
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These caleulations were, . carried out in the same manner
as shown in . conneotion with the eolution by relaxations The

v'results are _ s

: i
S -
, Ty Erle e - D.

= 7970,2 %nch—pounds

= 13.24 pounds

A

= 8858 tnch-pounds

: ;499;85pouhds

i

(= B |

= -12,52 pounds

tained by relaxations I ND' is calculated as the sum of
N, ' add 70 T, the result' namely, 8898 inch-pounds, 44f-
fers from . Np.= 8868';nch;poqnde by about 0.3 percent. The
value of :RD. ie practically equal to one-half the external
load. The sum of . ¥4 ~'add" Ty deviates from gzero by less
then 0.2 percent of one~ha1f the applied load.

e L B . L, L.
:..'- 8 . T . e
P . !

”ffg; Other Solutions of Ehe Pfobiem

" &s was mentioned in connecti.on with the'problem solved
1n the first section ‘of this psper, namely, the problem of
the mrc consisting of two quarter, circles, the operations
table of any problem.can.be interpreted as .4’ syste of simul-
taneous -linear” equations. -The first two equationg obtained
from the opérations table of the present problem. (tadble 6)
are listed below.

~3.,34833 vA + 8.92216 wp ~ 2. 69614 vB + 5. 95771 ¥ 500

8.93216 va - 327 866 wp + 11.4697 va - 13,1014 up (44).

I
o

- 61;242-wc + 8 10267 Vo

In the matrix calculus,methods are developed which are help-
ful 1in solving large numbers of simultaneous linear equations
In the apperndix such methods are explained .The. equatione
representing, the egg—shepe ring loaded with two equal r

~
I3 B T PR ‘_':l..-‘
L2

i

ﬁf;ihz \

i a
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- -

L

w .

and opposite forces were also solved by the matrizx calculus.
The results obtained ATE. 88, fpllpws.‘hqxrﬁ ;..

.
. - T

“_j'-_‘-

5;,yA:='-o 235549 ineh R ';:i_g-p 0 00602667‘556I£E"

vy = o.osse%pos inchpflgr:v i%;f}?iﬁ 06107944 radie?. (a5)
v =.0;139553i}nehﬂ1 o :f-tupsf 'O_l?l??l 1nch :;ﬁ&:;
‘ug =,;O;192él6;inc£- R if:" 57‘ I *:TJ::r
LT . o RIS AT IS S _'"f"ii§5:§

It may be seen tha§ these resulEs are “practically the .,
same as those given in equations (43). Tf follows from this
agreement of the . displacements that , the bending moments, the
axial forces, aﬁd ‘shear forces must also agres. The three
most 1nteresting values are given ‘below: -t

+ - N1 _ _

nA ‘- 7970 2 1nch-pounds ) )

TA 12 57 peunds o ' (46)
‘ fooicovast = o7 . : :
Ny = 88A4rinch—pounds S
HL I R VR Y - § o, A T T e o _

.
.:_;.- € '..,,._

The solutions by relaxatlon, the procedure of the grow-
ing unit, and the matrix caleculus were all based on the oper-
ations table. An 1independent chegk was obtained by, solving
the problem by the semi-graphie. procedure deecribed in ref—-w
erence 7. ) Ce 3 . o A

- 1t e LS -
R IJJ‘_ Y -

AW

. 3
N Y

In this procedure four 1maginary pins were inserteg 1g‘
the ring, &and the bending moments &t the four pins were con-
sidered es the statically indeterminate quantities, The
unknowns were combined- 'into suitable eymmetric én8 antisym-
metric groups, and their magnitudes were calculated with the
aid of the minimum strdin energy principle. Détafls 3f Lhe
calculations are not given here, only the valges obtained for
Np, Ty, and Np are.duoted:

P

N, = 7840 inch-pounds T, ='8.86 pounds” HD £”8466 1nch—pounds (47

L 2 e} P
. . -~ ca M nve 3 .
' ol e i A H ;

The deviation of the value of Ns 1in equations (47) from that
in equations (46) is about 1.6 nerc@ﬁt‘*whxh Ny the devia-
tion is about 4.3 percent, . - '
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The agreement between the results of the graphic and
the matrix analysis is astonighingly good taking into consid-
eration that in the graphic analysis extensione and shearing
deformatione were neglected, while the matrix calculation was
based on the operations table which was established with due
regard to these types of distortions. For the purpose. of
gaining further insight into the effects of extensional and
shearing deformations, the influence coefficients were recal-
culated neglecting the effect of these deformations. This
amounts to setting 1/Y equal to zero in all the edquations
of reference 5. The operations table calgulated with these
values of the influence coefficients 1s table 10.

In this operatlons table section C is displaced tangen-
tially whenever gsection B 4is displaced ta"gentially. and .the
two displacements ‘afe always equal in magnitude and sense.
Thie 1s a consequence of the assumption that the ring, in
this cane the straight vwortion BC of the ring, does not
change 1ts length during the deformations. Because of this
rigidity of the stralght bar 'in 1ts -own direction, it cannot
be determined whether a tangential reaction would be taken
up by the constraint at B, or by that at €. Consequently,
the tangential forece Tpg 4s listed in the operations tabdle,

where the double subscript BC 4indicates that the reaction
may be at B or G. _ ; S

. e RN . . - .

‘It may be seen that operations tavle 10 differs greatly
from. operations table 6. Nevertheless, the matrix solution
of the system of linear- equations comprising the openations.
table was found to be very simlilar to that given earlier in.
equations (45)., The present solution is as follows: .

v, = -0, 35185 inen L. }g“gfowoosess4 radian_
vy = 0.062543 inch S 'fué;e_ﬁc'; =0.17491, inch'(48) A
wg = 0.00091890 raaian-f . v = 0 18340 inch,. . |

The moments and forces werg'again calculated as before,
Some indicative values.gre as follows: e,

Ny = 7898 9 inch-pounds
TA =18, 134 pounds - C - (49)

Ny = 8819.3 inch-pounds. | :-.
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Th .4ifference hetween.conpresponding velwes™in géquations (49)
an ,L_J).is gbout 0.9 peroegt in.'the casé of Ngo and about
0.3 percenb in the case of le & ﬁ comparieon of all the five
solutions of the problem is given helow.;q.' .

T ] . BT T
- : A S

Relaxation Growing uni@- Matr;x . Graphic Second matrix
Pt s ‘ :i c (inextensional &eformations)
Ny (in.-1b) 7847 7970.2. . - 7970.2: 1 ‘7840 . 7898.9°
75 (1b) 17.73 O 13.2W 7 it T BNE6, 13.134
¥p(in.-1b) 8501 - B.868 . ‘gsl < T gu60. [ gE19.3
Rp(1b) 483 -499:8° . -Mgg.ETl T <500 U7 H500.0
Tp(1b) ~7.04 -12.52: - <1250 <886 L ~13.152
.. oo T o P,TZT‘ ;;
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The ‘moment distribution.is shown in figure S for the so—;
luti oniig- Ey relaxation, matrices, (including ths effect of :
shed?bng-and extensional deformations) and graphic analvsis.
The-c&rves ‘are very much aliks. a

« Vo

aty - .- - b

FﬁRTHWi’ILLUSTRATIVE EXAMPL&S e

r; w

B

A

r+?h§ Problenm pf.Ristzibuted Loaas,

The first example taken,up L0 . fhis chapter deals with
the calculation 6f the bending' moment distribution in a e¢cir-
cular ring frame 6f a fuselage the loading of ‘'which consists
of two equal and ‘opposite forces which ;:2dd dp té"d moment in
the plane of the ring, and of the balancing ‘shear "flow trans- |
mitte&-to the ring from the ahget .covering af the .fuselage, ~
(See «£1e.""210.) It is customary to assums that the~shear flow
can be «elculated from the formula gq = T/24, " wheré’ 15 -
the.shear: flow in pounds per inch, T -ths torqu% in inch- ’
pound®s, and A4 the area of the cirele in square inches.’
Recent investigations by Wignot, Combs, and Ensrud (reference
10), end by Hoff (referemce 11) ghowed that in sectlons of
the fuselage adjacent to rings loaded with concentrated for-
ces the shear flow differe considerably from that predicted
by classical theory.runlqss the ring has an unusually large
bending rigidity. Eecause of its baslic assumptions the clas-
slcal theory holds cnly at & distance from the load applica-
tion whieh i's of the order of magnitude of the diameter of
the fuselage.



50 NACA TN No. 998

It is8 not the purpose o6f the.present report to investi-
gate the shear flow in the thin wall of a monocoque fuselage.
The report deals only with the talculation of: the bending
moments in rings the loading of-which is:specified. It will
be assumed, therefore, that the shear flow in the present ex-
ample is constant and has the value predicted by classlical
theory.
The procedures developed in the preceding chapters can
be easily extended to include the effects of distributed
loads., The basic idea in these procedures wasg to break up
the ring into a number of units, and to clamp rigidlv the end
polnts of the units. The clamps were then removed partially..
at the different points in turn permitting a change in the
value or one displacement coordinate at a time. --When.one or
more of the units are .loaded with distributed loads, as in
the present case with the constant shear flow, the units can
be consldered as curved beams the ends of which are rigidly
clamped to the constraints. The statically indeterminate re-
actions (including reaction momentg) at the constraints can
be calculated with thb ald . of the classlcal beam theory,.
Forces and momentsg: equal in magnitude and opposed in sense to
these reactions ar'éd the loads transmitted to _the constraints
because of the disgtributed loads of the curved beams. These
forces at the constraints do not differ in any respsesct from
the concentrated external loads of the rings discussed in the

preceding chapters., They can be taken into account, therefore,

in the manner shown before by relaxation, the growing unit
procedure, or by solution by matrices. The graphic method of
reference, 7 takes care of distridbuted loads directly.

The prd%ﬁem a%ahand reduces, therefore, to the calcula«
tion of the h%aticallyflmdetermlnate reactlons of curved
beams. In reference 5 ~the ealculations were car;ied out for
beams havingd" arcs of a cirele for their median line the lomd-
ing of wiaich consisted of atauniform shear flow. It is be-
lieved that any ring can be' represented by arcs of a circle
with an acecuracy sufficient for- engineering applications,
Similarly, any variable ghear ‘flow ¢ver.an ar¢ may be replaced
by a number of constant shear:flows«acting upon portions of
the arc. - . LS

’ '(-f. n:"‘"':

Torsion of‘a Cirpalar Ring

Basic data.- Pigure 10 Bhows the circular ring of a fuse-
lage and its loading. The latter consigts of two 100~pound
vertical loads of opposite sense, and the balanciang shear flow

ELS
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= -

.transmltted %o the ring from the:sheet cove:ing The inten—
sity of the shear flow'ts. .. ™> ' = m=

—_—

o

q = T/24 = (1oo ﬁ 20 x é3/(2zrxzo )= 1.1263954° pdunds per inch

Cor .f
.

(50)
The cross-sectional area and.thg moment of inertia” of the
sectlion shown 4dn figure 10 are - - = — .
A = 0.250 square inch I = 0.1666 inch®

The latter is taken about the horlzontal centroldal axis,.
The ratio ¢ of the effective shear area to the ‘total cross-
gsectlional arez of the sectioﬂ was calculated from equation (11)

of referenté 5:° -y —

E = 0.160 A

Because of the antisymmetry only one-half of the ring
need be considered.i The half’ ring is" subdivided in two units,
one extending from point A on the axis of symmetry to the
external load (point B), the other .£rem the load to polnt G
on the axis of symmetry of ‘the ring." 'The angles subtended by

the arcs are 45° and 1350, respect}vely,. The parame%pr

; y A X g #JL'--Z __—.____
.,.,:. : """""z' '- o A’I‘ /I. '-. A o 4-.4 L L L
T -~ ) . ‘. .r‘ . ';‘:; e, i . .
PN ' - o _ii:_ég;
has the 7a1u38 370 258" and 3333 32, respectively. for arcs s
AB eand. BC.; With: - . . i - - Afl‘ .

R T - - . t'-
.\" oS

45° = Q. 785398175;rad£an and  138°% = 2. 3561945 raaianﬁ*
:1‘“.(-

k eand A are calculat d as 1n the preceding chapter.- 171\.;
0 - e
k = 1,0120785 - :_"iih;; = x = o 9912535 |
These values are valid for both arcs.‘ ey i
Can .:-_--_-'. - ‘:-,‘,"1}-_’_‘

Influence ¢oefficients s The influence coefficients
were calculate with the &id'of rcference 5 in theé™ game man-
ner as wes dbng for the- egg-shape ring of the preceding
chapter. Since the.cross section of thq qing s constant,

BI 4is e constant factor-in every 1nf1uence coefficfent I¢
is convenieit t6 assume its value ag 10° pound inches?
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LY
. T o.

- e ’ - o P - . 4
rather than to use the actual value., If the unit displacemepnt
ig taken as 10~3 inch and the unit rotation as 1072 radien,

" the influence coefficiente of arc AB become:

R
Thy = 281.950 Aty = -42.385 Tty = 49.079
Try = 11.178 Thy = -80.569 ‘7 "tbj e 52+B96 (513
Thy = -29.966 nrp = -4.733 abtp = 64.675
[ X T - . \ v ‘:1::; '.:'.'"",a':'.
Try = - 6.633 Tty =-22.441 ttp = 51.5186)
. TR f:__-‘bt St ‘. . - T4 ? - T
IR £ TN SN S S s . ' . : Pooroonug
"Phe. influence coefficlents of arc 3BC. are:
. A ’_.‘-- .a- .’. | ~
Thy = 157,899 nry = ~10.942 nty = 1.563
I_:‘"Z'M,Tr. . 1.160 réy = ~-0.419 tty = 0.332 F(sz)
b ﬁF = 1.116.  Figp = -0.524 _ fBp = 0.0685

S

" Operations Table
The operations table can be éﬁféblished now according to
the principles discussed earlier, Because of the antisymme-
try points ‘A and O cannot move vertically.._ .(See refer-
ence 9.) OConsequently, v, and vg are not ligted in the

operations table (table.ll), Moreover, there is no need for
balancing out .HA and “Rg in the Ffélaxatlions since whatever

values are obtained for theny dyring the relaxatlions of the
right-hand ‘side of the ring, valties 'of the same magnitade and
opposite sepse would be caused by the antiaymmetric distor-
tions of the left-hand side of the ring. It was alse found
convenient to move point C as well as A during the relax-
ations., This is a deviativn from the procedurse followed in
the relaxation of the egg-shape ring.

.'J(' L . !‘7 L)
- Effect of the gh_gr flow ~ The next step in the calcula-
tione is the determination of the effect of the distriduted
shear. The reactions:of the shear flow at the constraint's,
acting. upod the curved beams and teken. according to the beam
convention of:signs shown in flgure: 8a, can be calculated
from equations (33) of reference 5. For arc AB the values
of the determinants are:
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. hq = O'fdad6586 trFeva 8982727
L . . .
‘ ~0, = 0.0005867281%45% ='5,2093649 -

0.00893653% qr®"='4,0228506

>
]
L}

o = 0-05622000 qr® = 25.3078929 _
. : ) J T

|
&

o+

]

. '
Division  ¢f the numerator determinants by.the denominator de
terminant gives the moment, the radiasl force, and the tangeg

tial force acting upon thé beam at the. support touard wh;ch

the shear flow is directed: T wo i:
ni’: ~1.8350724 inch~pounds
r; = 1.8904153 pounds : .. {B4)  _
t = —-8.7471509 pounds ' o

..

. . S, ’ _ ’ - S mee
The corresponding values for arc B0 are: T

1,26215684 r = 25.2431368 W

b [ 7_Aq =
~Ap = 0.1489809 qr° = 1841,3002 )
q B ? tauc *(BB) A,
A Arq =-0.7079546 qr® = .318.69188 B =
-0 = 1.3379626 qr® = 602.29481
SEN R i, . 3yt
wo kR ' : —
, R av
ng = -53.135241 inch-pounds L
- Ty = 12.624880 pounds “&74 (56)
38T 85, s . e e S . RO
tq = -23.859745 pounds

. As mentioned before, these forces and moments represent
the reactions upni*the beamsi*%THE. forces and the moment act-
ing upon the constraint at section A& have the values given
in equations (54) multiplied by -1. If the signs: are now
convertéd: to agree ﬁlthithe rigid frame convention of flgure
6b, the final values become: .
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N, = -1.8350724 inch-pouhds

3
o
n’

-8.7471509° pounds’

Ry = -1.3904158 pounds (67)

-’

In section B the reactions upon beam AB can be ob-
tained Dy multiplying by -1 the values given by equations
"(54) since the shear flow is directed away from peint B.
The signs of the reactions so:.calgulated are in accordance .,
The different steps. qqeded for ob-
talning the effect of beams 4B and + BC upon .the constraint
at B are summarized below:

with the "beam ocrvention.

: o ¥y r Ry T3
wEv (in.=lb) ,{1b) (1v)
Reactions upon AB, beam.. B
convention, shear flow
away from B (from equa-
tions (54)) ' : 1.8850724 -1.3904153  _8,7471509
Action of beam AB wupon
constraint, beam conven- ~ L
tion ~-1,8350724 1.3904153_ -8.7471509

Action of beam 43 wupon _
constraint, rigid frame ™
convention

Reactions upon BC, bean
conventlion, shear flow
toward B (from equa-
tions (36))

tn1}

~
L .

~1.8350724

© 8% 135281

T~ u‘r-' YT

Action of beam BC ﬁbon
constraint, beam cons, ..
vention T

‘Action of ‘beam BC - upon ..

‘congtralint, rigid frame
zrconvention .
. T o e
‘Fotal Untalances due to .
shear flow

“i

B3 . 135241

v 3 »
BES A

-53.135241

-54,970313

1.3904163 -8,7471509

© 1%2.624880 -23.859745

o

p

' +12.624880  23,859746

AP T

| -12.634880 °'-28. 8597450

LR e

. . [ Cam
-11.2344647;'-32{6Q68959

!

~
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"The 100-pound vertical downward external load at B
also contridbutes to the tangential and radial unbalanced
forees. If this is resolved in the radial and tangential .
directions, the result 1s

Ry = 70.710678 pourds © Ty = 70.710678 pounds
Hence the total unbalances are

'~54,970313 inch-pounds

=
v: ]
L}

‘659 .4762133 pounds . (58)

o)
.
n

38.1037821 pounds

3
W
i

. In section ¢ the reactions: are the values given by equa-
tions (56) multiplied by -1 since the shear flow ie directed
away from point O. The aetion upon the ¢onstraint is ob-
tained by one more multiplication by =. The change from the
beam convention to the rigid frame convention does not entall
any changes in these values. Hence the finel values of the
unbalances -are. . .

Xg = ~63.135241 1nch~pounds

. Rg = '12:624880 pounds - o . s, (s9) .
H -.ﬂf .'-__,.‘...,:. . .
T Ty = -23 859745-peun&s “
* L Lo - - . .1 . . L N . - .-
! [ 7’:-)'.(:.:_-) e,
Soetuti re tions .- The rélaxation was carried out

in table 12, It may be noticed that it was more advantageous
to carry out operations on the’ 1onger. than on the shorter
arc. Moreover, sequences of the rFétations wg, wg, wp were
found useful C e :

From the total motione of A and B the radlal force
at A can- be calculate& ﬂhe motions are, .as computed from
tadle 182: : ‘

Triiowur onee s T -_"-IF - B el o

Il ;L - LIS R =

w; = 1.15 x 1072 ragdan °

i

y. = ~4.87 X 10 > inch
‘wp = -2.96 X 10°° radian

vg = ug = 0
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These notions muét be multiplie& by the respective inﬁluence
coefficients as? given in equations (51) B4 Bhould Be ., remem-
bered, however, that in the calculation of the influence co- fl
efficients the beam convention was used so that the forago— '
ing motionsg mushi'de, transformed to conform with the boam
convention. Reference to figure 6 discloses that the signs
of wp, and wu, must be changed, while the sign of wy

remains unchanged. Consequently,

: e _
w, = =1.16 x 207% radian u, = +4.87 x 1072 inch

Wy = -2.96 8;l0—3fpgdién_ ivB =-u3_= 0

With these values the radisl force becomes —

R

LN ‘o A
Rp = r‘15 X 42 385 1o 4 87 X 20 559 + 2. 96 x 4. 733 =_-37 3699
-ty . . 1‘1}? - . 'Dounéét'

Thisg force. caussd’bv the - distortions; has to be added to tBG”’
radial’ force é8fifed- ﬁy ‘tHhe ehear flow and given in equations R

(54)." Altogdthds, fx- 17 T L e

A

&1

.
i

RA = -37 3699 + 1,3904153 = -35.979 pound

. Since the tangential force and the moment at A have
the value zero, the bending moment distridbution along the
ring can be calculated with the aid of the elementary methods
of statics. The moments are caused by R, and the shear

flow along arc AB, and by R,, the external load, and the

shear f]ow alo ' g¥c BC; The actual calculation is not
shown, h@re. Tt ﬁill be taken up in connec¢tion with the ana-
lytical solution “of the problem. The bending moment distri-
bution is sHéWn 'fn figure T2, e '

ﬁolution,by the growing unit procedure - The problem was
also, worked out by the growing urnit method. . In+these calcu-
lations point"G was considered as rigidly £ixed. This fix-
atlon means only that the three poseible rigid body displace-
ments of the ring in its plane were eliminated. The changes
in the shape of the ring ésused by3ithé 1oaéing were 1n no way
regtricted by the assumption._

“« & U7 L - : . -

As a first step, section & was rotated through an angle

of 1073 radian. The effect of this,retat}on upon B is the

P v

1ii
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appearance ‘of the unbalances listed in the third to fifth
columns of the 0perations tadle (table 1)) .

- - Ll e
W

Néxt. section.B was displaced and rotated, while s&c~~.ﬂ
tions A and O were held fixed, in such a2 manner as fo. balance

out the unbalanced forces and moment at B. -The necessary
motions-sof.. B were calculated from the following three si-’

multaﬂéous linear equations. TGt

. . -439.849 wp + 31.443 vy - 50.642 uB = 29.966

31,448 wp - 12.388 Vs + 20 14 g = 2733 '{"(60)
- --""’J"‘? . "_‘ﬁ- . - '

-50.642 wp + 20.14 vp - 52. 618 up = 64.675

The .solution .of these equations is T

_____ .
7 Gg & 26711135692 x 10 °.radianm, ) _
vp = 4.085013 x 107° inch (61)
up = 2.880754 X 10™° inch

The effect of theSe'méfions-upop' A can be computed from
the operations table: T ' ’

S

29 966 X O 11135692 - 4.733 x 4.,035013 + 64,675 x 2.880754

NA::
= 170.552 inch—pounds' N
T, = -64.675 x 0,11135692 - 22.441 X 4.035013 + 51.516 X 2.880754

!

50.8E3185 pounds

The effect -of the miit retation:of A upon Al(when' B is
fixed) is listed in the operations table: ERC T '

Np = -281.95 inch-pounds Ty = -49.079 pounds
A;together,:fj:fif':“‘5“ N 13} {"“" .
DU B I Sl ne — : : . R o

§p = -281.95 + 170.552 = -111.398 inch-pounds ; )
f:"’l"‘ frar, (62

Tp = 50. 653185 - 49, 079‘= l 574185 pounds-
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These a*e the moment-and the tangentisl. force obtained at A

when A 4is rotated.through a'unit angle, ' and B moves in-

such a manner as to cause vanishing unbalances at B. In

other words, Ny and Tz of. aquation (62) are influence r

coefficients of the expanded unit arc AG .

‘The Influence coefficients of arc "AC ~cor-esponding ﬁo
a tangential displacement of 4 can'bé’oébeuinéd ih a simi-
lar manner. When section A ias displaced tangentially through
a distance.of 107 3 inch,. the unbglgncee; B are. the items
listed in thé third? Lfourth, and fi¥th columns of the second
row.of the ppergtions table. K These. upbalances. vanish if the
motion's of "B satis?y the following equations.

ey,

~439.849 wp + 31.448 vp - 50.642 up = ~64.675
31.443 wy - 12,338 vy + 20.14 ug = 22.441 »-{8a3)"
-50.642.wg + 20.14 vp.-.52,618 ug = ~51.516

The sdlution is R E . =

L1 s A comn?
wg = 0.022242916 X 10 ° rddian -

© s vy = =0,53028016 x 1Q % :knch s« -~ (64) .
_ toaldet ann ke 3 -
ug = 0.7546986 x 10 ° inch
;---,,;. I‘-‘I:’."'l % |-;.\-‘>--' . . . '_'.'.v‘ﬁ - ‘nﬁ'\,‘." [r R T ,. -
- The effect of these motions upoen A can be computed from
the operations table: . AT S . -
L il SREEE T A ) R -
Ny = -29 966 X o 0222u2916 + u 733 X 0. 53023016 + 6h 675 X o 75n6936
= 50.65%185 inch-pounds | ' o

Ty =064.675 x 0.0222U2916 +722 /4H1 "% 0.53023016 + 51.516 x 0.7546986

= 52,215509 pounds

LMo L

The effect of the unit tangentiasl displacement of A  _upon
itself ig again taken directly from the operations ﬁabIe.

G

Ny = ~49.079 1nch~pounds TA - 52,296 pounds

Cerd ...x. - Y D L.:.u"'J -8
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Altogether, . . -» “S[aQ,83m a lAVTALeLD - R
(S TN - . .
N, = '50.6B3188 V- 749,079 = 1,574185 ‘inch-pounds (65)
' 65
Ty = §2.21ﬁ§p@|r_52.296 = -0.079491 pound
[ ,‘l.-l‘l T -‘_ gt A AR A . N ) - T
These mre the influence coefficients of arc AG
..II ' ! y i .'." - .
In the next step. ‘the extvrnal loads acting wpon B
are balanced out by moving section B. The necessary motions

59"

can be calculated from three linear equations the left-hand
members of which are identical”with those of equations (e0)
and (62). The right-hand members.are the unbalances of equa~

tions (58)
54,970318 -

-59,47631

-38.103782 , .

The solution 1s

-

0.2815947 x 107° radian

"y . WB =
vp = 16.7820519 X 107 °.inch
ug = 6.8574788 X 1072 inch_,.

The effect of these displacementbﬂhiﬁh‘“Ri"is

R rani el

My = ~29.966 % O. 2Sl59h7 - 4,733 x 16 7320519 + on. 675 X 6 g571788
=-355.876L inch—pounds e
T, = 64675 x O. 2815047 ~ 22441 X C16. 7320519 + 51. 516 X 6. 85711-‘(88

~4.001964 pounds

reoe . - =T B

(66)

These are the unbalances catsed at A Dby bdbalanelng out the

unbalances at B, To these must be added the unbalances
tfone (57).

caused at A& by the shéar flow-as giveniby equd
Altogether, the unbalances at A are:
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Ny, = 355.8764 -~ 1.8350724 = 354.04133 inch-pounde (67)
: 67

T, = =4.001964 =, 8.7471509 .= =12.749114 pounds

e R . A G Co
The unbalafebs! guoted 1n equations (67) must then be
balanced out by moving A which 418 now considered as the end
point of the expanded unit., AC. The-requirement of vanishing
unbalances at A cen be written with the aid of the influ-
ence coefficients, of equations (§2) and (65). as )

- R .
-

o o NAN !

' -111:898 wy + 1.574185 u, = -354.04133

) oo D (683,
1.574185 'wy - 0.079491 u, = 12.749114 S
The solution of these equations is
w, = 1.2660489 x 10> radian
(69)

w, = -185.31193 x 102 inch

The values contained in eguations (69) completely de-~
fine the deflected shape. of the. ring. Equations (61) and
(64) contain the data necessary for the calculation of the -
motions of B due to-the displacements of Ay

- -1.2660489 X 0.11135692 - 135.31193 x 0.022242916 = ~3.1507157
1.2660489 x 4.035013 + ;35ﬁ31;33Lx_o.53023016 = 76.856071H
1.2660489 x 2.880754 - 135.31193 x 0.7546986 =_7gg.u72usas

WB_

-3

.
Yg

To these motlons those undertaken when B was balanced.mupt .
be added. The latter are stated in equations (66). Alto-

gether, B R S T RO . NI

€

wg = -3.1507157 + 0.2815947 = -2,869121 x 10 ° radian

76,.8560744 + 16.7330519 =,93.5881246 X 20 . inch

3

e
[e+]
!

= 29674724888 '+ 6.8574788 =,~91.615010 X 10 *.:inch |-

AU TR
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Bquations (69) and (70) represent the complete specification
of the distorted shape of the ring since section C was con-
sldered as rigidly fixed. The value of Ry can.now be cal-

culated easlly with the 214 of the influence coafficlents
listed in equations (51). It must be remembered, however,
that the influence coefficiente are always calculated in ac-
cordance with the beam convention. 1In this convention the
motions of énd section B of beam AB have the same signs as
in the rigid frame coanvention. The motions at A, however,
must be trensformed to read: ' - -

wy = -1.2660489 x 10 ° radien .
(71)
u, = 135,31193 x 10 ° inch

Hence,

Rg = 42.385 x 1.2660489 -~ 230.559 x 185.,31193 + 4,733 x 2.869121

+ 6.633 X 93.5881246 + 22.441 X 91.61501 = -37.93446 pounds

It must be remembered that an.unbalarced radial forece of
-1.3904153 pound was applied at A Dbecause of the distriduted
shear, as stated in equatieons (64). If this 1s added to the
value calculated above for Ry, the following final shear

force in section A is obtained:
Ry = -36.544045 pounds (72)

EKnowledge of the shear force in section A permits the calcula-
tion of the bending moments in the ring. The calculations are
not shown-here. They are discussed in connection with the
analytic solution of the problem.; -

The forces &nd the moment in section C ‘dre now deter-
mined since ‘they can serve as a check of the accuracy of the.
calculations. If the influence coefficients given in equa-
tions (52) are used, the motions of section B as stated in
equations (70) must be transformed to conform with the beam
convention: . -

-

vy 2.869121 x 10”3 radian

93 ,5881246 % YO™2 ineh

.'VB
91.615010 x 10~ ° inch

Up
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Then, et e R ..:?r:ﬂ;: : Co f- A T
No = B6.5117 x 2. 869121 - 8. 842 x 93 5881246 + 5 632 X 91. 615010

-~ i

-67.77655 inch- pounds S

. . o il S AL

Ry = -8.842 x 2.869121 + 1.116 x 93.5881246 '~ 0. 524 X ‘91, 615010
' oo SIS P

= 31.069316 pounds : : - 500

. -

T

.6.632 X 2.869121 - 0.524 x 93.5881246 + 0.0685 x '91.61501Q"
. vt e
= ~23,736486 pounds -

r
’

To thess values must be added the forces and the moment caused
at C by the shear flow in bar BC. ZEquations (56) contain
these gnantities. The signs, however, must be changed since
the shear flow ls directed away from section C. Addition gives

' Ng'= -B7.77656 + B3.135241 = -4,641309 inch-pounds
Rg = 31,069316 - 12.624880 = 18.44444 pounds (73)
To = -28.756486 + 23.850745 = 0,128269 pound . | . ... -
C e _ _ e -; :_1;J1_ v e J:n.g ER I A

The éefmg _Fd_ and To ahould be zero because of the anti-iiﬁf'

symmetry. Since the maximum bending moqent in the ring is ]
-482 inch-pound, the deviation from zero is only about 1 per<"
cent of the maximum, The deviation of Tc from zero is

about 0.1 percent of the applied 1oad ‘of 100 pounds. The
check of Rg can be made as follows: Ry - Rg 1is ~54,98849

pound . This quantity represents the total shear transmittegd
through the plane of symmetry of the ring. - The shear is act-
ing upward becayse ef .the negative sign. . The vertical com- -
ponent of the shear flow acting upon bthe right-hand silde -of -
the ring is 1.1253954 X 40 = 45.015816 pounds. This is also
directe&-upwgrd.::&lbogether, the upward force upen ane—half
the ring s - - -~ _ . _ . - A e s R B
54.98849 + 45.015816 = 100.004306 pounds . ""f;

. - Lo .. - e}
It should be equal to the L00-pound downward external force,

T

Wi
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Matrix solution.- The problem was also solved by the
method of matrix transformations as shown in the appendix.
The motions obtained are listed below:.

= 1.2646 X 102 radian ¢ ). .

u, = -135.3985 x 10”2 inch

wy = ~2.8709 % 107 ° radian > (74)
vy = 93.6280 X 10°° inech . e
up = -91.6842 x 107° ineh

J

Section O was again held fixed,

The displacements according %o eguetions (74) are in good
agreenent with those found by the growing unit procedure and
listed in equations (69) and (70)

Analytic solution.~- In the analytic solution again the
lowermost polnt of the ring is. congidered fixed. (See fig.
11.) In the section at the t0pmost point the unknown féensile
force T, shear force V._ and moment N must be applied.
Because of the antisymmetry,*however, N =T = 0. Hence the:
bending moment is caueednonly by V, +the external concen-
trated load of 100 pounds, and the shear flow. The contribu-
tion of the latter can be calculated with the aid of figure
11v. L . {_nguo 9.0

Cogaa Lol . ' P

The shear force acting upon thse infinitesfmal element of

arc subtended by the angle df¢ is qrdf. The moment daM

caused by this ehear f%?ce et . & is A L —

aM = aqrd& =7r{l - cos (p-8)] qrat

The moment My caused at.ro Dby a1l the shear flow from
E =0 to £ =@ is consequently o -

-

cyad e : -

]

My = ar® [1 - cos (@ - £)] af = ar® (@ ~ sin @) (75)

Do en

The total moment is
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wereily = gr® g velite) + T ein g

T3 BN ' ‘L- A e ’ o . s
when 0< o< 4s°
Mg = qr®(p -.sin ¢) + Vr sin @-+ 100 r(sin @ - 0.707) (786)
when f~w~~45° f’m-5'180° S

The strain energy of bending is

ag? ’ S 18g®
U = E%Eﬂ M,_2 rdep + E%?; . M%é,r§,?
o 45
hocording to Castigliame's primeiple. /i »3 .0 1T 0
o ‘ dU/dv = o .ﬂ;’*"rn. .

'__.(, :
K -

The differentiation may be carried Qub before‘the 1ntegration:

‘.' 5 ,,.'

Cae w ot g ,\-:;_, : ':::-'-“
g as© : o 1eé° ar o
au. v Do waM, g ANt gyl
— o —— ) M —— dCP s — . *h - .M» ,-)..—-.._ d_cp - 0
.4V - BL, 0o gy o EJ RS 3 4%,
e et - Yo Lo Mg

If the operationa 1n§icated are, carried out, the following

eqmatién is obtained- Ty - ;n..;.j i _ . S
gr + V + (200/m)[(3n/8) - (1/4) - 0.707] = O
Since i T

~

= (100 X 2r x 0.707)/(2mr®)

the shear force becomes

a,.,( -

'V = -36.5766 (77)

LY

Aeh
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.?.“':1. oo e

It may bve seen that this value ‘agrées weIl witb,those IS
tained for RA in the earlier aolutiona Subqsitution of s

Lfe
q, T, .and V. " An- eguations (76) }eads‘to the. final. expres—
aions fo; the b@nding moments:

M, = 450.16 (m -.8in P) - 781:53 sin es 450,16 @ '

1, : "

e L ‘f' e S a1 e ‘$in o (78)
- [ N . L e f}' '_"“T , ol <O
: - 0. wow o e
when - : '0 S‘m < 457 SN L
Mz = 450.16 (p -~ ein m) - 731 53 sin m + zooo (sin _®.g O. 707)
= -1414 +.450.16-¢ + B18.81 sin ®» (79)..
PR T . N . ’ v :f LA
when .. o,.- ' ¢ e§~§'3f75 P g 1so° - : . o= I
. . W "-- .; . . R ' :' ~ - ;:.:“_
T ha? %en&ing moment diagram 1s shown in figure 18. -
RO o R '- R

,ﬂ(; :_ Torsion of ﬁhé Bracgd éi:eular Ring

S R S vg '___..- U . LR
In” actual airplane fuselages the rings are often 1nter-

nally braced when large concentrated loads are introduced Lo
into them. Such a braced ecirgcular ring:-is shown in figure
13. Since the addition of the brace causes six mpre stati-
cally iIndeterminste quantities to appesr¥ in the salculations,
the work involved in the analytic solution of the problem of
the bending moment distribution becomes very much more in-
volved than 1t was in the case discussed in the Prechiqg
article, Because of the antisymmetry the aectual work in-
volves only the determination of one unknown quantity in the
ring proper and thres unknowns caused by the dbraces. "The-
increase 1n the work,is theh as’ followsi’

»
Sl

'Calculation of 3 moment diagréms instead of 2

Calculation of 14 definite integ;alx'instead'offzs'

el Laﬁﬂﬂ

pt — _en c* uwire

So}ution of & simultaneous eqngtions for 4 unknowns, . 3.of2
instead of getting 1 unkngwn from 1 equation 9”..3;' N ]

In the methods proposed in this report the additional
work consists only of the calculation of the influence coef-
ficlents of the braces. Because of the effsct of the braces
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the numerical valuesg id“the operationa table will be diffdrx g
ent, but the number of ‘éntries in the operations table will ¢
remain the same. The: solution of the problen by relaxationmo’e
or by the growing unit procedure will, therefore, not in-

volve any more work than in the case of the ring without the

brace.

The length of the diagonal is L = 36,955182 inches.
Its cross-sectional area is A = 0.125 square inch, and ite
maximum moment of inertia I = 0,020833 inch Since in the. . .-
caleulation of the influence coefficienta of the ring 1n
equations (51), was assumed to be 10° pound-inches?
vhile I was O 1666 ineoh* the calculationg will be con-
sistent only.ift.BIl. of the brace E¥E assumed

BI = (0.020833/0. 1666)10 = 125, ooo pound-inchea®

r

This means, of course, that the deflections to be calculated
would bs the actual ones if the material had a modulus of

E =6 x 10° psi. ~ #ith aluminum’ alloys, or steel, the values
must be multiplied by a constant factor.

The ratio £.wiA"/A:. 18 agaln 0.16. Consequently,
Y = 8194,1131 and the produet Y{ = 131}1.0581, The influ-
ence coqfficients foy the/movable end- of the §Qraight bar
were ca]eulated»fgomrequations (25) of reférence 5,

oo RIS » 5 " 3 , "-.f;c’ ) ',i
P mle gmpuen o oLk 0T ':’N . . 0o
o = l 43?%ﬂ_jﬁ ﬂﬂﬂsﬁfﬂnﬁ:?q’aﬁﬁbiélﬁ 'ntM'i %b"ﬂv C80)’ b
> [ SN L AR 14 iﬁ'-‘\v k] E RS R S ’ . o Ponaegd o
TPy = 0 029%5‘16 _": L“?fﬁ;i S Qngd ‘(,,;-,;,x—;.;-.~’a.;7fh= = 20.2949" -1-'--‘7’,'.‘_;‘
-t b vooaning ,_... s o B! T4} Al t Sy oL W R N
srrﬁ*'ﬂ*f LU “uﬁzf‘ o e d e m}f*Jai ;'75"
The influenbe” ébeffﬁci ﬁ jf r e fixedven& wsrg.detérmined fﬁj,
with the” a&d bf e&uation ?5 ) f refemennef51~7f= T S
ot e U DL - P N .l T e
iavnl :
Ahp = -6.67292 EEF = 0. 544194 HEF”=10 gyt
i IR S FUTL L I CER S o )
FFp = ~0.0294516 - EEF = 0 tty = 20. 2949 . .
- D T R TOUN { S L I A
Bepta oo UL Tomm T . -

) PO | ‘£
Since in th% poeratlons table. pointe ' B’ “Bnd C reﬂ?
moved tangehtid il"pp raddally: o .the birecle it 1s neces-
sary to convert'the above influence coefficlents into values

that corresgoy% 5o those #isplaceﬂ&nts.u be“ihs%apée._"“}‘. cr
unit displa bm ﬁt; '1 .fangentigily too the circle dgwnngg ,
~Twes £ R b .dt.-.-"

s " . %
st wld oo Mo 'iu et gL
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to the right is equivalent to & thAngential (lcngitudinal) dis-
placemgnt of - -sin 22.5° for the straight bar combined with
a radial (perpendicular) ‘displacement of- cos 22. 5%  for the
straight bar, when the beam convention of figure 1l4b is used.
¥ith . :

.

‘sin 22.5° = 0.38268.- " cos 22.5° = 0.92388

-y . T

the following foreces and moment are obtalned at B, actlng
upon the straight bar and déaignated according to the beam
convention: - -

~0.544194 % 0.92388

Ngp = = -0.50277 inch-pound
Rgp = 0.0294516 x 0.93388 = 0.02721 pound
= +20.2949 X 0,38268 = -7.76845 pounds - -

'TSB

where the subscript 3B designates that the forces and the .
mément ares bised’ upon ‘the - system of" coordinates of the
stralight bar,;..They must be ‘converted to ¢onform with the’
system of coordinates based on the clrcle before they can be
entered in the operations table. If the subscript O3 rex~
fers to the system ofi.coordimgetes of the cirecle, and use is
made of the diagrams of figures l4c and 144, the following,
values are obtained: ' ’

B LN [ £, o Ve heem e H N R fo bt

Ngp = Ngp = ~0. 50277 inch-pound

"y

Rgp = -Bgp gin 22, 5° - Tgp co8, 22. 5°

Er R N

= -(0, 02721) X 0.38268 + (7 76845) X o 92388 = 7. 1667 pounds

-
.

RSB cos 22 59 & 5B sin 22 5 o

. . . T .
'Y ..-{ “

JT:Q .B

= (0. 02721) 3 0 92388 + (7. 768457{x 0. 38268 = 2. 9980 pounds

R E P i 3 3 Lo - - ER :=_.‘__'f

4. v e te ~

The forces ana “he moment just calculated represent the action
upon thée "structutre. Multinlication by -1 converts them into
the effect’ of the structurs upon the! constrdlnts, taken in ac-
cordance with the rigid frame ‘conivention based on the’ circle.
These values must be added to those listed 1n: tTHe oparationa
table of the circular frame without® bracing (table 11). The
sums have been entered in the new operations table (table 13).



68 NACA TN No, 998°

‘The effect of -4'radlal diéplacement and of a rotation '
can be found in a similar manner. As a further example for
the resolutions, the effect upon 'O© {the fixed end) of a L

-

unit rotation of B (the movable end) is now considered. 2 .

A anit clockwise rotation of section B of. the circle 1is
the positive unit rotatloh of 'section B of the dtraight bar
as shown in figure 14b. The foreces and the moment caused at
C by this rotation are given in equation (81): I R

¢ . . . - . . . ) P | R

= -6.67292 inch-pounds

1=
w
td

}

e Rgp = 0.544194 pound gy g o = =

sz 0 o

These quantities aré the forces and moment's abtihg'hpén the
straight bar at € and taken according to the beam conven-
tion shown in figure 15b, A positive moment Ngg at. C is _ o
counterclockwise. Hence.'thé moment Ngp. taken in accord-

ance with the-rigld frame convention of the circle has the _
opposite sign nd - . o S . — _ .

- Nop = -Ngp = 6.67292 tign pounds L

The radial force RSB i1g resolved with the 8id of figure l5c:

B O N O AT SR

Rgp = -Rgp sin 22.5° = -0.544194 x O. 38268 = ~0.20825 pound
Top = -Rgp cos 23.5° = -0.544194 X 0. 9?388 = -0,50277 pound ' .
‘...:-l.r LA '_’ h . . .. _.n .1. ..l ol -‘:’:'_.:""- - . . .'..-'.l.' e ==
The values of Ngg, Rgp, “Tpop must be mulpiplied by -1
in order to obtain the effect of the structure upon the con- “

straints as.regulred; for the operatiohs table, .

The operations table for the braced circular ring 1s
presgnted, ag.table 13,. It was used in-thé relaxations con- <
tainéd - in,table 14.. As -may be seen,-the rélaxations were cnr- i
ried Qu% in the same manner .28 in the.case of . the ring- witho
out bracing. The abpolute magnitudes of the:déflections ‘were '
found’ to b6 .much . gmaller than _before.:c "For: the Ehear force at
A the VElue' ~6 4964 .pounds-was: obbained' nLn et

. 3
A T N A LY L
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The distortions were determined algsg by the growing unit
procedure. The individual steps in the caledlation are not
given here since, except, for the numerical valunes, they wers
identical with those presented in the preceding.’article.
Section ¢ was again assumed to be fixed. The distortions
were found to be: Cwd Bt st poeens

t e 4 i

wy = 057486859 %1013 nadian )

6.499450 x 10 ° inch

=]
L
L]

(82)

—~

;
Lt
£
b
[}

~0.04252815 x 107 ° radjan

0. 21585307 X 10“3 inch

.fu-

-
B:l
4 ll

: _;r)" .i‘.' .
ot e uB # 7.4627458 x 10

17y ier

.')-

p IS L A
-3 1nch- SR A T

Penoraitne W B e " : e _.‘ LR

Comparison of the values given in equations Yé%Sawith
those contained in equations (69) and (70) revesls the great
stiffening effect .of ‘the draces.. s

The value of :the shear  forge Gin section & wae found to
be -6.460 pounds. This value deviates from tHat obtained by
relaxations by O0.6:percent..  The bending. moment dlagram 1is
shown in figure 16. It may be gseen that “the *fntroduction of
the.braces resulted in the reduction of the maximum bending
moment . from ~482 1nch-ponnds &0, :mB8,1- Lnoh-poundskﬂ.

J
'9',)‘4'1"“*.0 b £00

. 3 .ur-_r; - w
The. problem was- also- solvgd by th; £g§ﬁ?a_of'ma€rices.
The resulZing distortions‘differ@d gnlyJigglgnificantly~from
those i1s ed“in equatio&s §83ur 1o o rmas e :wza" £ B
'A’-; L avr a -t ' TR e _
] .. STl ‘1 kN ..;,:"_:'3_ n-’-'}.:- . 5 ;__‘-_ ; 1“}'1..,.1._!_; -
T Torsion:wif the: ﬂégrshape Ring 3"fr-q i

T D ] .’
Ly e . - T LW . -
D S A ¥ . » '"_

. The egg-shape ring and its antisymmetric loa&ing shown
in figufe 17'&te the-same.aﬁlthm@p -esented in refsrence 7.
The ghape “¢f the structurﬁ-isffﬁzdt,oal Wwith that- usei lgar -
lier tq“this Teport when ‘the - ben@ing,qoments caused bi LwWS il
eqqu and opposite forces were calculatéd. " K¢ in tHe case '
of “thé 'twidted cirecular ring, 1tbis agsume& thqt “fhe - ‘shear
flow transmittéd from the sheet coveringd of “tre fuselaqe 6T

the ring is constant and can be calculated from the formila -

'w:s? . : ." ERIFE: R TI. FIRURR T ~v4uxud .

. _-'I
L. _ T/BA"E 2HF OL swumeit up bliasy
‘ . BB AS ST I

Lo ba -

CBow vida. omes

aspnogn

- - LA 5 B T
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In-the present case the torque

. T = lOO % 30 3000 inch—pounds . 'l g
while the area included by’ the ring : ' .
A,=.2757.642 square inches

Hence,

Gy 3006/(2 x 2767. p42)= O. 54394298 pound per inch

When the operations table was set up, the shearing and ex-
tenslonal stralin energies were neglected. This is egquivalent
to setting 1/Y = 0, -as was' explained whéen the loading con-
sisted of two equal and opposite forces. The angles subtended
by the nnits congidered are;

SR M e

N . .

Arc AB ' 0.84306211 radian
re..BG . . 0.52137719 radisn

Afa” D8 .. 1.7721543=g¢d;ags-

The influence coefficlents were calculated -and the oper-'.
etione table was established according‘to “the ‘procedure die- ' .
cussed . in the earlier parts of, this report. The operations
table ds reproduced a8 table" 15 It served as the basls for
the calzulation of the distortiong hy the growing undit method
The distributed shear forces were takén inté dcéount es ‘exs '~
plained in connection with the torsion of the cilrcular ring.
Point I was congidered as rigidly fixed, Because of the
antisymmetry.section_A could not move radiélTy.
Pheani ot

Solution_ b _£he_ nit method.-~ ‘The application of
the growing unit,prqcedure to this particular problem con-
sisted of three fain parts. In the first,the expanded units
were established; fn‘ the second, the unbalances Wwere transg-
mitted from section§ B, C, and D to gectlons A and'E; and in
the last part, the ugbalances at ‘A were qllménatqd o

The bending momeﬁt'didgram was cdaléuldatéd ‘and is pre-
sented in figure 18, The dotted line represents the bending
moments obtalined in reference- "t by the graphic method. The
agreemer.t 1s reasonably good.
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Torsion: of. the.Braped Egg_Shape Ring
. t T
Figure 19 shows the braced egg shape ring: and its anti—
symmetrie loading. - Ehe crose -aection of the brace was thken
the same as in the case -of the braced circular ring. ' The
length of the diagonal is 64.983655 inchea. " The influence.
coefficients were caleulated . and the operations ‘table’ was es-
tablished according to: the princinles discussed earlier.

S

The data contained 1n the Qperatioqs table (tadle 16): oélﬁ

served as ‘s, ‘basis ‘for the caloulatiqn of the deflections by -
the groWwing 'uldit. procedure. The results ?re. . AR
e f Teos ..’:-_ - ,4_ ) - "_-TT:—P_'-E'_.:.___ —Tam
wy = ~0.7703892 x 10™° radian .wg.=. 0, /19370249 % 10 "% radian
uy = -12.059222 X 10”2 inch.. "+gf; 9245786 x 10 ? tneh .-

wp = ~0.00896880 x 10~ > radian 'ucD -9“301079 x 107% tnen.

R ——

vg = 1.9469763 x 10”2 inch wy = _0.1969354 X 10°% radian

up = -12.20075 X 1072 inch vp = 10.421443 X 10~ ° igmeh. .

e § o« oL

The motions of sections A and B Ln conjunction with the.“
influence coefficients Permit ﬂhe calculabiom of the shearing
force Ry 1in section A; oo

1_-.--f . l .« . [P e

9] e, o

G s s 4 - : T o
N 5f6.5Q15_gqug455 '

bk

;ry-'j‘, ’ ’ T

The mobfionsg of. B and the influsénce cosfficients of. tho
straight .bar BE suffice fof fle calcuiatioﬁ of the forces
and moments acting on bar ;§E%H When these aré known, the.
bending moment diagram of tpe ring can be detefmined

"The'%ending moment diagram is preéent%dﬁin flgure. 20
It nmay bs* seen that the bracing was Very Eéﬁeficial in reduc-
ing the 'berdding moments. . . ot 7. :

Flehn Ay Ty ot e

r
o 3

AL SN A N : C .

CONGLUSIONS
Lo - A .‘l":.:..

'\-\ . L. L__

The subjeet of thid reﬂéft is the numerical calculation
of the distortions of and thé - bending moments in rigld frames
(fuselage rings) of arbitrary “shape upon which known ooncen-fnﬁ
trated and distributed lomds dre acting, The calculatiogs
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conslst of two major parts: the setting*up ‘of the equations
characterizing the problem, and their solution.

The equations are set up by dividing the frame into 8-
numbenr of.-beams, eagh having a constant radius of curvature
and a conetant (often zero) distributed Load. The influenee
coefficierits of the individual beams. can "be easily computed
_,Mith the ald of tHe formulas, tables, and: graphs presented in

reference 5. They can be combined into quantities that are
entered in the operations table: gpccording to the suggestions
made in-this report. The operations tadle, together with the
external-loads, completely defines the prodblem, and can al-
ways be established without difficulty,

On the other hand difficulties are encountered.in the
golution df the“set of linear equations defined by the opera-
tions table, The fundamental reason for the  difficulties 18
the facf thh't 4n’ ‘most cases the bending moment, the normal
force, and the shear force in sectlons of the frame are ob-
tataned as smali differences of large quantities,.

Py Phree methods of solving the linear equationa are pr&—
sented. The first s the .solution by Soutlwell's method of
systematic relaxatidns which is a procedure of step-by-step
approximnations. Four numerical examplgs give an indication
how the 1ndiv1duab 8teps' in the relaxation procedure may be
arrangad 80 as to achieve a rapld gonvergence of the proced-
ure. Ifi"most cases, however, it ia not easy to find the
proper sgsuccesslon of stepe. Because of this, the procedure
of the growing unit was devised.  In.this procedure, the in-
dividual beams are combined into units of increasing length
until finally the entire frame becomes a single unit, In
each step of the calculation n'ot more than thres simultaneoun
linear equations must. be solved. TFinally, the third method
1s the direct solution of the set of linear equations by
means of'the matrix celeculus. -The latter two procedures are
straight forward and can theoretically always be carried out.
The work involved, however,.increases with the number of sub-
divisions chosen, and because .of the small differences of
larga..numnbers occurring in the computations the use of cal-
culating machines may becomse indispensabdle.

It Is of interest to compare the numerical procedures
here suggested with known methods of analysis of the bending
moments in fuselage rings. Fully analytic methods _have been
published only for cilrcular and elliptic rings for:-a re<"
stricted number of conditions of loading.. Rings of sarbitrary
shape were discussed by Lundquist and Burke (refe;qnce 8.},

-

T

f*ﬂ%
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Hoff (reference 7),and du Plantier (reference 8), rings with
additional internal bracing elements by Lundquist and Burke
(reference 8), 8Simple ring problems can be solved by any of
these methods-wifth comparative ease, sd that the procedurés -
sugzested in this report show no particular advantages'in
these cases, The numerical proceduresg of this report become
advahtageous’ wheﬁ'one or more internal’bracing- elements ‘are
incorporated int¥é the frame. The additiondl elements entail

e slight increase in the work'of sefting up the operafions
table, but the solution of the e uations does not necesgitate
any additional ‘work.  If the e uét £3ng ‘are solved by re d¥a-
ti858; ‘the number of steps necgssaf£ may even become "gfifller.
Sined“int “¥he earrier ‘methods "¢ hd‘wo k" involved in the célcu—
lations increadds Papiély when redundsnt bracing elements are
added to,the frsme, the advantage of ,using the procedurqs qf .
this report 1ncréa§es ‘with each addéd bracing elemert .

’Lf
. . . . ioeefe
Polytedbnic Institute df Brooklyn.
Brooklyn, New York, February 1945. _ o
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APPENDIX -

'DIREGCT SOLUTION OF A SYSTEM OF LINEAR EQUATIONS

Ag was shown in the body of this report, the operations
table represents a set of simultaneous linegr equations.’

The equations can be solved directly by the methoed. of elim-
inations. Tne only difficulty lies in the great number of
simultaneous ecuations and the -corresponding great number of
unknowns contained in the operations table, DBecause of these
the numerical work-is far t00 cumbersomeé ‘unlesg the dpdra=:: -
tions are carrisd out in a systematic manner. The systeématio
solution of sets of linear equations 1s one of the subjects
of the matrix calculus. The slements of this discipline
needed here are very simple, An attempt 1s made, therefore,
to present them in .an easily understandable manner, K

First a set of linear equations willl be solved by the
methods of high school algebra, Then it will be shown that
the same calculations can be carried out in a more concise
manner*through the usé¢ .0f the matrix calculus.

As an example, the following three equatious containing
three unknowns will be considerei:'

-H'-n.2~x + y-+ z = 8;' - (la)
3. . " . s, - - T - : ot

tx v 2y 42 =9 (1v)

x Fy+ 2z =7 (1e)

Divide equation (ls) by 2::
x+0.-5 y+ 0.6z = 4 (2)

Subtract (2) from (lb) C e o

1, 5 y +. 0 6.z = 5 i
Subtract (2) from (10) | a o
SR ooy as s m w0 ey
1% may:be'ééen that equations (3) do: n°h*gq;£ain.' ?ij,if

any more, , Fext ¥ - can be eliminated from equation: (8Db) i
first equation (Z3a) is divided by 3:
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0.6 y + O, 166 'z = 1,66 (4)

?nd)sutsequentlv equation (4) ia subtracted frOm equation
3b)¢

1.838 2 8 1.383. - - o - (8)
L i oo
Equations (B), (3&) and (Ia) can now - be easily solved for
the unknowns., Obviously,equation (5) yields ‘
el T (e)
Substitution of equatiOn (6) in equation (Ba) end’ solution'
for ¥y gives ) _
ST pas TS
Finally equation (la) 'yields after eubstitutiOn of equationa
(6) anda (7): : : ..
G v L v LE

,iu, puata i Siin T g oa g :" ' __' o (8)

N -

. -

The seme probléew will now be solved using the matrix no-
tation, The first achlevement 0f.the matrix c¢alculus is
econamy.-0f writingi"~ As long as the firast column ‘always con-
tains the x terms, the second the ¥y terms, and the third the
2 terms, 1% is necessary to rewrite .x,:y, and z, The si-
multgnecus equations are characterized by the get of coeffi~
clents srranged in an ordered array. - Thus the left-hand
members;, of equation (1) can be represented by the set

Pt 2 .i 1] ST . , Y
' o et o
A = 1 23 1 (9)
11 2 | er o en t geetads
It is customary %o enclose the set of coefficients with~
in brecksts as shown in ecuation (&).* or the set of coef-
ficientw. in brackets, is known as a "matrix The nine num=-

bers in the brackets are the "elements" of the matrizx,

The second important device in matrix calculus is the
operation called "matrix multiplication.," This operation is
in many respects very different from what i1s known as multi-.
Plication in arithmetic and algebra., It would be better per-
haps to ¢oln a new word for this operation in order to avold

MR

- S

-”ill ll i
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misunderstandirng, This wouwld necessitate, however, ‘the memo-
rizing of some artificisl expression. As things stand now,
the operation is known as "multiplicetion" in mathematics,
and engineers have to conform with the usage. They should
remember, however, that 'matrix multiplicatlion means the
complex operation shown below, snd not what someone might
infer because of the familiar expression "multiplication.!

The produect of two matrices is again a matrix, the coef-
ficients of which have to be calcunlated according to. the fol-
lowing rule:! . .-

ay @& ag 2y . dz dj &1 8 &3
by by by X | e, ey e, = h, :h, hy (10)
¢y ©¢3 ©Cg £, £ £ -51 Ja da
g; = 8,d; * 8y, azf, B
8, = 8,0, * 8,8, azf,
g3 = a,4; * aae; asf;
hy = byd; + bye; + byf, f (11)
h, = b,d, + bye, + b,f,
dz = €345 * e ey oo Ty J

The rule shown in equations (10) and (11) can easlly bve

extenged to sguare matrices of any order.

The

"order"

of a

square matrix is equal %o the number of rows (or columns) in

the matrix, Two examples of matrix muItipIication are given

below?
1 3| |s%el - (1x6)+(3x1), (1xe)+(3x3)| ' | 8 12
X = i , , =
2 4 1 2 (2x5)+(ax1), (2xg)+(4x2) 14 =20
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(— — : - —

1 0 0 0] 1 1 1 1 T T
1.1 0.0 |1 o o - 8 3 1 1.
. . R 4o i .. i - = !

c 0 1 1 0.0 2 o} 0 0 2 2

0 0 6 1. c o o & LP' o o 2|

It should be noted that, in general, the "matrix prod-
‘uct" changes {f the factors in the product (that is, ‘the two
‘matrices) are interchanged, For instance . '

~ T N T .. oo

1.2 3 0 7?7 2
X = . ] ,.(12&)

. L1 ;ﬂ Lz }_ bs 1_

3 0 1 2 rs 6
X = (12v)

2 1 1 1) 3 5]

— - e -t -

In equation (12a) the matrix

2 1

is sald to be "premultiplied," in equation (12b) "postmulti-
plied" by the matrix

1 2

1 1

With the'aid of the multiplication rule of: matricee,;
equations (1) may naw be,written in the following form:

(x, ¥, 28] x|{2 1 1 = [8, 9, 7]

At

1w (13)

i
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The "rof matrix?i,l?.f%}é

z97* 14 ldentical wiihsthe square.
matrix i i T

& %iac il TR F

PR R

2

o Q M
o o %

o
G|,

Application of the multiplicatigh-fﬁle to the left~hand mem-
ber of equation (13) yields . : .

B e & e T -
; TAVIG M, L - ) ]
_— — — - p—

Xy z 2 11 (2x + y+2) (x+ 2y +2) (x+y+ 22)
' i o= LR R
0 0 O xl1 2 1= o} 0 0 | (14)
' T : g =
O 0 O 1 1 2 o] ) 0 0
L - L - L b -

The right-~hand member of equation (14) can be written as a
row matrix

[(2x + vy + 2), (x+2y + 2), (x +y + 22)]

80 that equation (13) is equivelent to

[(2x +y + 2), (x + 2y +2), (x +y+22)] = [8, 9, 7] (15)

Bquation (15) expresgﬁﬁ_phg eﬁuqlity of two matrices., ~Metri-
ces are considered equal if, and only if, all their corre-
sponding elements are qﬁhgl., IF ‘one equates corresponding
slements of the matrices on, the two sides of the equality
sign of equation (15), the followingz algebraic equations are .
ocbtained: ' B ;

N
2x + ¥y + 2

X+ 2y + z = 9 (1)
X +y + 2z =17

. 84“

which are indeed identical with equations (1).

It should be noted that when the matrix equation (13) is
transformed into three simultaneous algebraic equations, the
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matrix is read "downward," not from the left to the right,
in agreement with the rules of matrix multiplicatioan. For
instance, the matrix equation
[x, ¥, 2] x t1 23| = [1, 0, 3]
5 4 2

123 2
is equivalent'%d“%hé“Eﬂyeg aigebraic equations

X + By + 28 = 1
2x+4y+3__z_=0

3x + 2y + 28 = &

and not to
L ﬁﬂﬁx“+ 2y + 3z = 1
Bx + 4y + 2g = 0O . 4 v ot oaitn
"“:-.+-"“-'
2x + 3y + 2z = 3 I B2

This. distinption cannot be noticed in the case of equa-
tion (13), since there the square matrix is "symmetrig,!. ' -
which means that elements in it are equal if they are sym~ T
metrically. situated to the principal diagonal. The Yprinei--o3
pel diagunal" of a square matrlix is the diagonal passing.fram
top left to bottom right, :

The following results of matrix multinlication are worth
noting:

(1) The matrix
1l 0 0O
I, = 010

001

P S A SR
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18 called the "identity matrix" of the third order. The
matrix ’

I, =

18 the identity matrix of the second order. An identity ma-
trix of any other order is defined in a similar manner: Ig
is & square matrlix having 1 for ite principal diagonal ele-
ments, and O for all the other elements. Now, aprlication of
the rule of matrix myltiplication shows that '

7 4 fl.‘-1 10 OT : 7 4 1-

557 x‘lo10] = |5587

- lre28]  joon (123
and .
- - = - =
100)] 233 33 3
010| x lzoz1| = |201
oo1| " |12 3 123 |

It can be seen that any ‘square matrix :emains-uﬁbhanged

upon premultiplication or postmultiplication by tHe identity
matrix of the same order. L T o

(2) Multiplication yields

123 .:]110 133

czo| x jorof = {020

331 001 3 6 1

In other words, postmultiplication by the matrix

-
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110
010
_i_O 0 i-

left the first and third columns of the first matrix un-
changed, and transformed the second column into the sum of .

the original first and eecond columns. In a similer way, - it

cap:. pe seen that
2 00 1 0.5 0 210
811 X 0 1 © =8 51

4 3 2 0 0 1 4 5 2

or in other words,-poétmultiplication by the matrix_

1 0.5 0
6 1 O

c 0o 1

left the first and third columns of the first matrix un-
changed, and transformed the second column 1into the sum of
the origlinal second column and one-~half of the original
firet column. Also, -

"2 01 100 201
083 2| x {013 = |03 11

10383 001 103

Hence, postmultiplication by the matrix

100
01383

001

e
ii.ﬂlﬁ-.
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left the first and second ¢StTumns of the first matrix ud- .-
changed, and transformed the thrird column into the.sum of the
orlginal third, and three times the original second columns.
It may be stated, therefore.- - o . . » )
; Postmultiplication by e matrix in which all principal
diagonal elements are unity, the element in-the: pth row and
gth - columrn i1s .k, and all the other elements are zero, 1is
equivalent %to an addition to the' 4th column of-the:original
matrlx of k times the ©pth column of the original mabtrix.
The effect of several nonvanishing elements off thg

pritéipal - diagonal ¢can. be understood from the exampla,

1'21 11-0 .135,
o211 x |012] = |oz2s
2 01 001l ‘221!

—t .. : - 3 ~ 'J
s - .

Here, postmuitiplication by the matrix . . -

"J . .. -
1 1.0_'."
01 2 .
ooi _

left" the first coliumn unchanged, 88d8d tb'the secbnd column

the firet column, and added to the third column the Houble of

the second column. The knowledze gained from these examples
nay. be utiliged in the transformation of a set of linear
equations, IR ‘ S 5 L e

In order to solve the matrix equation (13) for the un-
knowns x, y, and =z, Tboth sides of the egquation are first
postmultiplied by the matrix .. -
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Postmaltiplication means. that, \M; 18 written as, a8, factor .. |
behind’ the membersfbf the '‘equation: - - : -

[x, vy, 2] x {211 1 -0.5-0.5| =10[8, 9, 7} x |1 -0.5 <0.5
izl Jo. 1 o , o 1 o | ()
vaes o el oo 1 o o 1
T AT T - '

It was spown in equations (12) that the order of factors in a
matrix’ product 1s of great importance The result of a post-
multiplication differs, in general, fronm those of a "premulti-
plication" in which latter the same factor M, would be

written before the members of equation (13). The rule for the
constructlion of M1 is as follows:

(1) P11l in the principal dlagonal; that 1s, the diagonal
of the matrix runuing from top ‘left to bottom
right, with the digit 1;

(2) P111 in the remaining places 4n' the' £fir'st row with
the corresponding values of the original matrix
divided by the first element in the first row of
the original matrix (in the present example 2)
and by -~1;

(3) A1l the remaining elemgnts of M, are to be filled
in with 0.

- 1f ‘the matrix multi@licat}qy 1e-.carried  out, the .follow-
ing result is obtained : : o

t

N A

[X, ynl ZJ X'

Gt t YOIET Y g
) o LI R 1
’ RS f
This equsation can be written in an equivelent row matrix form,

1f igo desired: N £ I V

[(2x + 5 + 2), (l.by % 0.55), (0iby + 1.52)]1 = [8, 6, 8] (19)
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The matrix equation. 1s.agaln squivalent-to three algedbrale

equations

"2x +'y + 2
1.5y #.0.5z

0.5y + 1.6z

(20)

It will be recognized that the first of equations (20) is the
‘same as the first of equations (1),
third of squations (20) arse identical with equations (3a) and

(3v),
Hl

respectively.

In other words,

while the second and the

postmultiplication by
achieved exactly the same transformation of the system of

equations as d41d the algebraic operation thet originally re-
sulted in equations (3),

The matrix.operations can now be continued by .the appli-
cation of one more postmultiplier

M

1

0
o 0
0

0

L

M, defined as
0
~-0.38

1

(21)

Postmultiplication' of equation (18) is indicated as follows:

[‘x' Y.. 5] X

*

When it is carried out,

[x

—

‘2

.0 0

1'1.5 0.5

1. 0.5 1.5

—

-

y"._z] X -

—
2 .

. 0,

11.50

1 0.5 1,333
sl

—

10 0
01 -0.33

0.1

G 0

the result is:

{8, 5, 3} x{1 0 ©
0-1 -0
.8 0
(8, 5, 1.333]

1l

. —

.33

(23)

(22)
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e ¢

. . e g _
Egquation (23) may be written in the row-matrix form:

[(2x + y + 2), (1.5y + 0.52), (1.3332)] = [8, 5, 1.383] (24)

o

This matrix equation 1s sequivalent to the three simultaneous
algebralec equations B .

2x + y + z = 8
1.5y + 0.5z =5 - 3 o (25)

1,333

"1.8835

Compariszon reveals that the first two of equations (25) are
Identlical with the firet two of equations_?ZO), .Congegquently,
the first of eguations (25) is the same as.the first of equa-
tion (1), and the second of equations. (25) is the same as
equation (3a). The third of equations (25) is identical with
equation (5). .

. ! 4

Thus, it has been shown that the two matrix multiplica-
tions irdicated in equations (17) and (22), respectively, re-
sult in the same set of linear equations as those obtained by
the use of methods of high .school algebra. The characteris-
tic prorerty of the set of equations (25) is that the last
equation contains one, the middle one two, and the first one
three unknowns, Because of this property the equations can
be easily solved one by one, as was done in equations (6) to
(8). The square matrix in equation (23) 15 Jjust a convenient
representation of the left-hand member of equations (25). It
falls into the category known as "triangular" matrices be-
cause all 1ts elements are zero on one elde of the principal
diagonal. a B T o

i -

It is, therefore, the purpose of the postmultiplications
to transform the original matrix into a triangular matrix,
which can be solved then by elementary algebra without. any
difficulty. '

The procedure as developed here may seem ta bg lengthy.
A considerable part of the material presented, however, was
purely explanatory and can be omitted from the actual calcu-
tions. The essential features were: - .

(1) Representation of the equations by the matrix of
the coefficients of the unknowns

— =

.
]
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121

121

11 2

" and by the row matrix of the right-hand side

[s 9

-

(2) Construction of the postmultiplier

1 -0.5 =-0.5

according to the rules

(a) BElements of: the principal diagonal- have the value 1”

0

+ v

87

(p)

(e)

. .

(v) Elements of the f*rst row off %the principal diagonal
are equal to the corresponding e¥ements 6F the
original matrix divided by the principal diagonal
element of the first row and by -l°

(e) A1l other &léments are 0.

(3) Fostmultiplication by M,
and the row matrix:

1o
211.|-

1l 21 x

o 1 0
0O 0 1
1 -0.5 -0.5
b 1 o}

of* both the square matrix

(4)

(e)
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(¢4) In all the later operations undertaken, the flrst .
column and the firest row of the right-hand member of equation
(@) renain unchanged. It is, therefore, permissible to omlt
them from the further considerations and to center the atten- *
tion upon the two-by-two square "submatrix" obtained by
striking out the firet column and the first row:

(£)

This submatrix has to be postmultiplied by the matrix M
constructed exactly according to the prescriptibn contalned Ll

.

1 -0.33
M* = (g)

a Lo 1 o

It may be noted that M*; can be obtained from M; (see

equation (21)) by striking out the first column and the first
row, .

Pogtmultiplication results in

(1. 0.5 1 -0.33 [1.5 0
| . (n)
[0.5- 1.5 | o 1 |o.s 1.333

N . - . -l .. - R
- . L X . E

(5) In & similar manner the first element can be omitted
from the row matrix of the right-hand member of equation (o).
The submatrix s0 obtalined is

[5, 3] . (3) -
It must be postmultiplied by M#_: - | .
[5, 3] x |1 «0.33 | =[5, 1.323] (k)

o] 1
(6) The complete transformed sgquare matrix consiste of
the first row and the first column of the right-hand side
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member of'equation_(d), and of the right-hand side member of
equation: (h): : ' Co : :

1 1.5 0 | . . ()

1 0.5 1.383 A

(7) The complete,tédnsfonmed }HQ matrix consists.of the
first element of the: right-hand side member of equation (e),
and of the right-hand side member of pqdation-(h :

1
[

Es,5é, 1.33sj 0 (m)

(8) The complete transformed matrix equation can be
written as a combination of (1) and (m) as follows:

[x, vy, 2} x |2 © 0 | = [8, 5, 1.333] (n)

1 1.5 0 i

' ~ .]1 0.5 1.333

- . - -

.

This equation is identical with eguation (23) ‘and can be
solved as gexplained below equation (23).

The'gp§§étions outlined in the-ﬁrecéding elght polnts
can be arranged concidely according.to the following schede:

8 9 7 _
2 1 1 ~-0.5 ~-0.5" °
' 4 '
1 2 1 1 0
1 1 2 o 1 :
.' 5 t B 3 - .

— m— . — oot . . aa— apm m—e — e m— — - —_—

.
+
Yoo
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The first line in tHe scheme represents the original
row matrix (b). Below it is arranged the original square
matrix (a). To the right is the postmultiplier (e¢) except
that its first column ie omitted. This first column is not

needed since 1t would enter only in the calculation of the
first column of the matrix product which need not be rewrite

ten since 1t remaine unchanged as explained under (4)

The values under the first full horizontal line are ob-
tained by postmultiplying the row matrix [8, 9, 7] by the in-
complets. postmultiplier. This postmultiplication 1s carried
out exaz2tly according to the rules of matrix multiplication
given earlier. Because of the incompleteness of the post-
multiplier only two elemente are obtained in the product,

The firast 1s

[8 x (~0.8)] + (9 X 1) + (7 x Q)
the second ' _ g

[8 x (~0.5)] + (9 x 0) + (7 x 1) = .3

Since the omitted first column of the postmultiplier contained
the elements 1, 0, 0, multiplication by it would have glven 8,
the unclranged value of the first element of the row matrix.
This need not be rewritten.

The square matrix under the row 5, 3 is comﬁuted in a
similar manner by postmultiplying the original squere matrix

by the incomplete postmultipller. Multiplication of the row
2, 1, 1 would give: ' TR :

[2x (~0.8)] + (L x 1) + (1L x 0) =

[2x (~0.5)] + (1 x 0) + (2 x 1) =0

These two zeros need not be listed. Multiplication of the
second row ylelds .

[1 x (;o.s)] + (2 xll) + (1 x 0) = 1.5

[1 x («0.5)] + (2 x 0) + (1 xI) = 0.5

These two values are listed in the first row below the dotted

line. The elemsnts in the second row are obtained in a simi-
lar manner: - o

i

L
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[1x (-0.5)] + (1 x 1) + (2% 0) ="o'."5'

n
-
"

[1 x (-~0.5)] + (1 x 0) + (2 x 1)

F - =

N

The column to the right is the second column of the post-
multiplier (g). The first column of this postmultiplier ie
again omitted as unessential for the computatlons.

The last two nuibers in the scheme are computed by multi-
plication by the incomplete second postmultiplier in the same
manner as described in connection with the precedling opera-
tlons.

It must be emphasized that the scheme given does not con-
taln a complete presentation of the matrix multiplications.
It 1e Just a convenient short-hand reproduction of the compu-
tations given in more detail under (1) to (8). TFiémiliarity
with this scheme of operations makes it possible to reduce
quickly, with the least amount of time wasted in writing, =a
given set of linear equations to the diagonal form.

An example 1s now given, withgut explanations, for the
reduction of a set of four equations.

;
The equations are!

4x + 2y + = = 11

2x + 3y + 3v¥ = 16

x + 2+ w =11
2y + 27+ v = 117
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11 16 11 1 | .
_______________ it e
g 2 1 0 -0.5, ~0.25 0 .
2 3 0 2 1 o 0
1 0 2 2 0. 1 0
0 2 S1o. A 0 0 1 .

2 . -0.5 -2 . 0.25 -1
-0.58  ~1.75 1 1 0
2 1 1 0 1 '

(LN
1

1.635 1.5 ~-0.923
1 5 - l 1 {
~9.55
~2.385
Hence, the tramnsformed set of equations can be written
in the matrix form as follows: . -
r._ . .-‘ . -
(=, ¥y, 2, w] x | 4 © 0 0 = [11, 10.5, 10.875, ~9.55] )
2 2 0 0

1 -0.5 1.625 0O

o 2 1.5 -2.385

wi .
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This matrix equation is equivalent to the four algehraic

ST r 4

equatiOne. O N RIS : LI Rt -

L e S - L . : S R L
4x + 2y + - ‘g ¢ 77T =711

SoLadt ' ’-z}’-'— O 52 : z'# 8(': . ‘= 10‘5

& . L PN T o-

L. szs LB 10.875 :.

, L _ , : --....-'. o _'.- 2 385w = _9...5.5 -
Y S R A - e = -
_f:-:,': - . . . . - . :

The lasgt one of tpa equations gives immediately

. r : T S -
v L -

. .. .w =‘4-'

Substitution 'in the'preceding,eduatioﬁ‘iields

.Y

1.625z = 10.875 - 6.= 4,875

g2 = 3.
- w ~a

- 3

Substitution of w and =z in %hq_ggcond'eqqation results in

- L% .. - .
- h - . -- . ; R

2y ¥ 10.5 ~. 8, # 1.5 = 4 Tt b

, RO .
) , L . .." : e - . R LT+ Yl
Consefuently, - L A T
et e I L B R L
R Ce :

Finally, there is obtained, . . L

4x = _ll -3 . L = A +aNd s A - ___::_ -'

. " Wt w 3o v T . . e e £ - L Pt

Y [ . o N i . - P 10 A Y -T-....'[ N
and thwssy- 2Tt P < :

.
I
CS e

™
[}
]
2
'
o
-~
-
Wt
A

: o ' - . - e ~ T
- . . . . t oz .:' 'rf. X
Ll . . . - . -y . .
3 <8 - . -

e

“Whén thernumher of simultaneons linear aguations is _f::!
arge, the . computational work is greatly reduced by the ige """
of & calculating machine. A& calculating machine may become

necessary also for reasons of accuracy, when tQQ computations
[ " x

- v R Y . ....
.- T

-
b
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happen to .involve small differences of large numbers. L An ex-
ample is now given for the solution of seven equations with
seven unknowns. The equations represent the problem of the
egg-shape ring with symmetric loads.

i

In this example, as in all the matrix computations of
this report, the. work of writing was further reduced by the
adoption of the following scheme. Instead of writing out the
entire matrix multiplier, 'only-the. first row is put down, and
even the first element of the first row is omitted. It may
be remembered that all the elements omitted are either equal
to unity, or %to zero.

The first row in table 17 contains (-1) times the exter-
nal loads of the egg-shape ring with symmetric loads. The
following seven rows, under the dotted line, are identical
with the rowe of the operatlons table (table 6). The next
row, unéder the s0lid.line:and included in parentheses, pre-‘
sents the multipliers. They are (-1) times the ratios ob-
tained by dividing tne elements of.the first row under the
dotted line, except the first elément of this row, by the
first element of the first row., The first ratio,
~-(8.92216)/(-3.34833) = 2.66466, 1s listed in the second
column (in the column of 8 92216) The other ratios follow
in the third, fourth, and so forth, columne.

. The row .undgr the rafios ‘containse the transformed exter—
rnal loads. The value in the 4th column of this row 1s ob-
tained by multiplying the firet element in the first row of

the table by the multiplier in the ith column and adding to

the product algebraically the value of the element in the -
first row and the 1th column, Thus, for instance, In the
second column the value 133,233 _was calculated as follows:

2.66466 X BO + O = 133,238 .. - .

It may be seen that in thig manner only six transforred ex-
ternal load elements are obtained from the original seven
external load elements. .

a

Following the same rule, ,the. .orlginal seven-bdby-seven
matrix is transformed into the six-by-six metrix contained
between the second dotted line and the second full ones. For

instance, the element in the fourth” coiumn' nd ‘the thirieenth_

row of the entire table wa's. computea as fol ows:::;,-_ﬂffq

"3.,96771 % 17 184@% %730, 9568 = was 2549
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This scheme ig followed until the external load elements
are reduced to a single element, end the matrix 1s alsoc re-
duced to a single element. The leading columnsg represent then
the equations of the triangular system. For instance, the
leading column of the third step may be written as

-1,77854 vy + 0.204688 upg -~ 8.96572 wg + 0.775767 vg = -38.3834

The leading column ¢f the sixth gtep is:
~1.084845 vg -~ 0.854970 ug = ~19,2443

The full set of these equations can be solved as shown
sarllier.

As a second example of the procedure actually used in
the calculations, table 18 is presented. It contains the
transformetion of the matrix of the circular rlng with anti-
symmetrlc loads. :

More information on matrices, wrltten from the standpoint
of the person interested in applications of the matrix calcu-
lus to problems in physics and enginsering, may be found in
"Elementary Matrices and Some Applications to Dynamice and
Differential Bquations" by R. A. Frager, W. J, Duncan, and
4. R, Collar (University Presa, 1938). The procedure used in
the present report can be shortened further if advantage is
taken of the fact that all the matrices dlecussed in this re-
port can be set up in a symmetric form. Such a simplified
procedure was suggested by M, E, Doolittle in "Method Bmployed
in the Solution of Normal Equations and the AdjJustment of =
Triangulation,® U. 8., Coast and Geodetic Survey Report, 1878,
pp. 115-120, A discussion of the Doolittle technigue may de
found in an article by Paul S. Dwyer in the December 1941
{ssue of the Annals of Mathematical Statistics, Vol. XII, No,
4, pp. 449-458., A more modern approach to the solution of
simultaneous equations arising in engineering is given in the
paper "A Short Metheod for Evaluating Determinants and Solving
Systems of Linear Equations with Real or Complex Coefficisnts™
by E;;;cott D. Crout, Transsctions A, I ,E,B,, vol, €0, 1941,

P. . : : A _



- Table 6. Operations Tabie
Operation RA ,EB 1".:Bb_ ' ib. ' Hb Rc Tc. -
blv, 104 in.|-5.34833[8.92216 |-2.69614 [3.96771 R
[]wg=10-% rad. 8.92216(-327.866 | 11.4697 {-15.1014 |-61.242 (8,10267 o.lx
[8]v=107% in.|-2.69614| 11,4697 -4.00991| 5.4352 | -8.10267 0.66158 -| -
[eJog=10"% in.| 5.96771] -18.1014 3.4352 | -30.9566| 0 . | O 26,2056 |-
[6]wg=10-% rea. -61.242| ‘-8.10267 0  |-288.367 -2.95522 | ~5v246k7 [
[6)vy=10"* 1. 8.10267 0.66158| 0 ~2.95622| -1.90205 | -0.88929 |
[7] ng=10"% 1n. 0 0 | 26.2058 |-5.24667| - .88329.| ~27.08%3 |-
The notaticn adopted Tor the displaoements is as follows- a
stands for a tange1t1a1 V'for a radial dlsplacement w for a rotat1on. The

subgoript refers tq“the voint that moves:’

s

L
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Table 10. Operations Table

VA=10_4in. ~8,3726365|31.372640 |-7.6032219| 10.097316

WB=10'4rad. 31.372640 |-479.93253)|33.93750 -~40.987910 |-81.64964 10
vB=10'4in. -7.6032219] 33.93750(~2.1891329] 9.4690625|-10 0.8164964

uB=uC=1O"4in. 10.097316 -40.987910 |9.4690625 -~13.515682 |-8,8655104 ~1.3664455

wc-10"4rad. 481.64964 |-10 ~8.8556104 |-3b4,21850)~5.791741

vc=1o:4 in. 10 0.8164964 -1.3664455 |-5.791741 | -2.6516009

‘ON NI VOYN
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Table lle. Operations teble for circular ring
Operation inlf . T N NB RB TB Nc Tc
. in.=lb., 1b. 1b. in.-lb. 1b,
(1] wAﬁlo-srad. -281.95 |-49.,079 | -20.966 | -4.733 | 64.675
[2} v, =107%10, | -49.079(-52.296 | 64.676 |-22.441 | 51.516
(3] wB=10'5rad. =29.966 | 64,875 | -439.,849 | 31.443 [~50.642 | 56.5117 | 6.632
'[4] vB=10'3in. ~44733 [=22.441 | 31,443 [-12.338 | 20,14 ‘8.842 | 0.524 -
[5] ugL10-3in. | 64.675 | 51,516 | -50.642 | 20.14 |-52.618| ' 6.632 0.0685 ’
[6] wy=20"3rad. |’ 56.5117 | 8.842 6.632 | -157.899 | ~1.563
(7] vy =10734n. 64632 0,524 | 0.0685| ~=1.563 [~-0.322
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Table 12. Relaxation Table for Circular Ring

Operatio N
pe n A TA Nﬁ, Ry . TB Nc Tq
1n- 1b. 1b . in.-lb . lbo lbu in.-lbo 1b .
External “1.835 | =8,747 =54,970 59.476 38,104 =53¢135 =23,860
loads
0.42{6] 23.75 3,71 2.78 ~66.4 | =0.655
“1¢84 -8.75 -31.22 63,19 40,88 -119,5 -24.5
-78.2[71 -505 ~39.9 =5,21 119,2 24.6
! ‘1084 "8075 "536-2 2303 35.67 "013 Onl
-2,0[z] 60.0 -129.4 880 -62.8 101.2 -113,0 -13.26
5842 -138.156 | 343.8 -39,5 136.87 ~113,3 -13.2
1{1] -282 -49,1 ~30,.0 447 64,7 '
-223,8 18743 313,.8 44,2 201.6 -113.3 =13,2
-60{7] ~398.0 -31.4 -4,1 9349 19.3
-22308 "'187.5 -84.2 "75|6 19715 -19.4 6.1
-0.35{6] «19,8 =3.1 -243 5544 0.55
"223.8 "18703 “'10400 "7807 195.2 36.0 6.65
-0,90[ 3] 27.0 -58,3 396 2843 4545 =50,9 ~5,96
-196,8 ~246546 292 -107.0 24047 -14.9 0.69
O-l[l] '28.2 -4,9 «3.0 "005 6.5
~225.0 ~250.5 289 =107.5 247.2 -14,9 0.69
-0.1(6] =546 -049 -0.7 15.8 0.16
) «225,0 ~25045 283 -108,.4 246,5 049 0.87
-0,06(3] 1.8 -39 28.4 =1.9 3.04 ~3.24 =-0.04
~223,2 “254,4 31,14 -110.3 249,54 ~2434 0.83
0.05(1] ~14,1 2.5 =1.5 0.2 . 3423
~237.3 | -256.9 | 308.9 ~110.5 | 252.77 | ~2.34 0.83
-4.87[27] 239 255 -316 109.3 -251
1-6 ‘1-9 ‘6.1 "1.2 1.77 "2.34 0083
Results of
a. check
table 1.637 -1,944 -7.246 -1437 1.969 -2.792 04412
' }




Table 13. Operations Table for Braced Circular Ring

Opsretian N, T, L RB_ £ 5, Tq
In.-1b. 1b. in,-1b,  1b. Ib.  in~lb. 1b.

[1] w,"20"5rad, | ~281,95 | ~40,079 | -29.366 |~4.7334 | 64.675
{23 TA'10'3in. ~49,079 | =52.296 | 64,676 [-22.441 | 51.516

(3] wB=1o-3rad. »25.966 | 64.675 |=453.287 |31,2348 [-50,1390 49,8388 |7.134970
[4] vy=10"3in. | ~4.783¢ | =22.441 | 51.2348 |-29,6640| 12,9762 |8.63405 7.709555‘
(5] uB=1o'3in. 644675 61516 | ~50,1390 12,9752 |-55.6162 |7.134970|3.015462
(6] wg=10"5rad. 49.8368 18.63406 | 7.13497 171.357 ~1,06003
{7] w7107 in, 7.134970 |7,709565 | 5.015452|-1,08008| -3.31919

*oN NI VOVN
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Table 14, Relaxation Table for Braced Circulaer Ring

101

Operation T N T
pe FA A Né RB TB ; .
ino -lb.- 1b . in. 'lbo lb . lb‘ in' 'lbc lb .
External
loads -1.835 -8.747 ~54.,970 59.476 38,104 ‘' | ~5%.135 =-23.860
-0.4{86) -19,92 ~3.46 -2.856 6846 0.424
' -1.835 =8,75 -74,89 56.026 35.254 15.46 23,436
-8.3171 -59,15 ~64,05 -25.1 8480 27.6
-1.835 8475 -134.04 -8,02 10.1 24.26 4,2
~0.375(3] 11,25 24,25 170.,0 ~-11.70 - | 18.8 -18.70 -2.67
9.41 =33,0 36840 ~19.72 28,9 5.56 1.5
0.1[1] 28,2 4.9 =340 0447 6eb
"18079 "3709 33.0 -19.25 35.4 5056 1.5
~0.24[4] l.14 5.4 “745 7.13 ~3.1 -2.07 -1.85
~17265 ~32.5 25.5 ~12.12 323 3.49 -0¢35
-0.05{3) 1.50 -3,24 2246 ~1456 2.5 «2 ¢ 49 ~-0.356
16415 -35,74 48,1 ~13.68 34.8 1.00 -0.706
0.084{1] ~18.,05 ~3.14 ~1.92 ~0¢3 4,15
~34.2 ~38,88 46,2 -13,98 38.95 1.00 -0.706
0.1{ 4] ~0a47 2,24 3.l 2497 1.30 0486 0.771
~34.67 41,12 49,3 -16.95 40,25 1.86 0.065
0.01117 -2.82 0449 0.3 -0,05 0.65
~37T.49 -41,.61 49,0 -17.00 40,90 1.86 0.085
-0.795{27] 39.1 41.6 =515 17.8 -21.0
106 0 —2.5 008 _001 1‘86 0.065
Results of
a check
table 1,5217 -.05656 | =2.4849 -,072270 | 0,01066 | 1,8078 0.00159




Table 15. Qperations Table for Torsion of Egg-Shaped Ring

Operation N T

in.—ib. 1g. in.l:g. I:g. ig. injgb. l:g. ) :g? mljglb. ?ﬁ.
%,*10rad. |-625.185 |-217.240 | 178.054 |-82.9465 | 234,496
yA=1o~31n. 217240 |-175.295 | 254.496 |-79.8920 |174.451
w;=10"rad. | 178054 | 254,496 | -1606.64 [:-291.974 | -1496.08 | 367.170 | -278,790 |1314.66
vg=10-3in. |-82.8465 |-79.8920 | -291.974 |-248.18 |-660.021 |278.790 |-185.110 |744.755
w <1073in, | 234,49 | 174,451 | -1496.06 | -660.021 |-2955.36 | 1514466 | ~744.755 |2778.29
wc'10'3rad. 367.17 | 278.790 | 1314.66 | -1246.76 | 408.048 |-1278.84]-81.5496 10
v¢‘10'3in. 2784790 |-186.110 |-744.755 | 403,048 |-211.246 |738.001 |-10 0.816490
uCD-10‘31n. 1314.66 | 744.755 | 2778.29 | ~1278.84 | 738,001 {-2781.37]-8.85510{-1.36345
w "1073rad. 81,6496 | -10 -8.85510|-354.218 | 5,791 74
vb=1o'5in. 10 0.816496 | ~1.36645{-5.79174|~2.6516

‘ON NI YOV¥N .
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+ Table 16. Operatiomma Teble for Torsiom of Braced Egg-Shaped Ring

Operation ¥, T, L8 Ry T N, R, T 5 Ry
in.~lbe 1b. in.-lb, 1b. 1b. in.-1b. 1b. b, in.-lb. 1b.

wA=10"3rad. ~523.185 | ~217.240 | 178.054 | -82.8465 | 234.496

uA=1o‘35n. -217.240 | -175.205 | 254.496 | ~79.8920 | 174.431

wB—10'3rud. 178.054 | 234,496 |~1614.32 |~292.08 | ~1495.94 |367.17 {-278.79 [1314.66

vBﬂ10-3m. -82.8465 |«79.8920 | -292.08 | ~255.880 | ~-665.456 | 278,790 | -185.110 744,755

up=10~3in, | 234,496 174.431| -1495.94 | -665.458 | -2959.23 | 1314.66 744,755 |2778.29

wo=10"%ad, 367.17 | 278.790 [ 1514.66 |~1246.76 | 403.048 |-1278.84-81,6496 10

vc=10"3 in, ~278.750 | =185.110 | »744,765 | 406,048 | ~211.246 |738.001 |-10 0.816496

u, =10"%in, 1314.66 | 744.7556 | 2778.29 |~1278.84 | 738.00L |-2781.37|-8.86610|-1.36645

. =10"%rad, ~81.6496 | =10 ~8.86610 | ~354.218| -5, 79174

vD=10-3 ine 10 0.816496 | -1.36645(-5,79174|-2.6516

*ON NI VOVN
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Table 17« Matrix Solution of Egg-Shaped Ring With Symmetric Loads
'gA Ny Rp T, N, Rg Ts
50 _ | __ _¢ o _+_9° _t_ 0 _ 0 _{r_o__1_6 _
v, | -8.54883 7 8.02216 | -2,8961% [ 8.98771 T 0
Wy 8492216 | ~327.866 11,4697 -18,1014 | =81l.242 8410267 0-
vy | =2+69614 | 1144697 -4,00991 | 3.4352 -8,10267 | 0.66158 0
U 3496771 | ~13.1014 | 3.4352 ~30,9566 0 0 26,2058
wg 0 -G1l.242 -8,10267 0 -288.367 | =2.95622 | =5.24667
s 0 8410267 | 0,661580 ) -2.95622 | =1.90205 | ~0.88929
g 0 0 0 26.2058 -5.24667 | -0.88929 | -27.0833
(2.66466 ~-0,805219| 1.18498 0 0 0 )
1334233 «40,2610 | 59.249 ) 0 0
w <304.091 T T 2.26547) -2.52882 | —eT.242” {&.x0287 [ T o T
vg 4.28540 ~1.83893 | 0.240328 | =8.10267 | 0.66158 0
up -2.52880 04240325 | -26,2549 0 0 26.2058 °
Wg . -81.242 ~8,10267 0 ~288.367 | =2.95622 | =5.24867
s 8410267 0.66158 0 -2,95622 | -1.90206 | ~0.88929
u, 0 0 26.2058 ~5+24667 | =0.88929 | -27.0833
(0140925 | -«0083159 | -.2013936 | 0266455 0o ).
88,3834 | 58,1410 | -26.8323 | 3.85006 | O __
vy -1.77864& | 0.20469 -8.96672 | «776767 |
uy 0,204688 | =26.2339 | 0.50928 -.0673811 | 2642068
W, -8.96572 | .509282 ~2764033 | =4.58804 | =5.24687
v 0.775767 | =«0673810 | =4,588046 | =1.,68615 | =0.88929
ug 0 2642058 ~5.24667 | =0.88929 | =2%.0833
(+1150888 | ~5.041056 | 0.,4361819 0 )
£3.7255 | 1662661 | «18.192L | _ O _
~26,2103 T =0,52256 | .0219001 [ 26.2088
wg -0.52267 | =230.836 | -8.49872 | =5.24667
A0 +021901 | =8,49873 | ~1.34777 | -0.88929
Ug 2642058 ~5+24667 | =0.88929 | -27,0833
(~.0199372 | .000835549) 0.999828
1654590 | -13.1472 | 53,71426
'WC "2360 8-26— ™ '%.-4-9-9’13 T :-5:76-9-0-5-
7 ~8.49917 | =1,34779 | -0.867393
ug ~5.7691¢ | -0.867394 | ~0.882007
(=+0368206 | =.02499353)
~19.2443 40.57559
v -1.084845 | =0.654570
ug -0.654970 | ~0.737816
(~+632915)
61.76560
Yo 0.3232757

|
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Teble 18. Matrix Solution for Circular Ring With Antisymmetric Loads

yA Ty Ng Ry Te
1.83567 | 8.74716 | 54.9703 _ _ ~59.4762 -38.1038
281,950 49,079~ -29.966 T TeE. 7354 T T 7|7 T 64.6%5
~-49.,079 -52.296 64.675 -22.441 51,516
=29.966 6844675 -453,287 31,2348 =50.1390
-4,7334 -22.441 31,2348 -29.6649 12.9752
64.675 51.516 =50,1390 12,9752 -55.6152
(=e17407 -.10628 -,016788 +22938486)
844277 54.77527 -59,5070 -37.6829
45,7528 T T T88.89T1% T T|T T-Z1,61708 T T |T T40.2580"
-21,.61706 31.7379 ~29.5854 11.88943
40,25804 ~57.0127 11.88943 -40.7797
(1.59744 ~.894073 0.920124)
68423776 -63.6709 =29 92837
=B3FELAbTT T[T T =2 wesE T T T T7.29580
-2, 7934 -18.9050 -8.00095
7.29590 ~8,00098 -3473731
(-.00825334 .02155606)
=64 +23409 ~-28.4574
~18.88195 — [ ~ =BL081i8
~8,08119 =34 58004
(~0.4269241)
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NACA TN No.998 Figs. 1,2,3
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FIG.l. CURVED BEAM.
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FIG. 2. ARC AB.

FIG.3. ARC AC.



FIG. 4. BENDING MOMENT DISTRIBUTION IN CURVED BEAM.

8€6 'ON NLl VOUN

¥ Bid




NACA TN No. 998

SECTION E-E
(ENLARGED)

»

1000¥

FIG.5 EGG-SHAPED RING WITH SYMMETRIC LOADS.



NAGA TN No. 998 Figs. 6,7
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NACA TN No.998 Fig. 8
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WITH SYMMETRIC LOADS.
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NACA TN No. 998

Figs. 10, 11

— —"Q=1125 LB/IN.
FIG. 10. TC'
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FIG. (1.
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Fig. 12
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NACA TN No. 998 . Figs. 13,14
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(b) BEAM CONVENTION FOR STRAIGHT BAR.

(C) RESOLUTION OF RADIAL FORCE.

(d) RESOLUTION OF TANGENTIAL FORCE.

FIG. 14.
RESOLUTION OF DISPLACEMENTS AND FORCES.



(b) BEAM CONVENTION
FOR STRAIGHT BAR.

(C} RESOLUTION OF
RADIAL FORCE.
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FIG.15. RESOLUTION OF FORCES AT FIXED END.




NACA TN No. 998 Fig.16

FIG. 16.

BENDlNG MOMENT DIAGRAM OF BRACED CIRCULAR RING.



NAGA TN No. 998 Fig. 17

FIG. 17 EGG-SHAPED RING WITH ANTISYMMETRIC LOADS.
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NACA TN No. 998 Fig. 19
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FIG.19 BRACED EGG-SHAPED RING WITH
ANTISYMMETRIC LOADS.
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FIG.20 BENDING MOMENT DIAGRAM OF BRACED
EGG-SHAPED RING IN TORSION.



